由题意,根据所给的定义及对数的运算性质对四个命题进行判断,由于在不同的定义域中函数的解析式不一样,故需要对a,b分类讨论,判断出每个命题的真假
【解析】
对于①,由定义,当a≥1时,ab≥1,故ln+(ab)=ln(ab)=blna,又bln+a=blna,故有ln+(ab)=bln+a;
当a<1时,ab<1,故ln+(ab)=0,又a<1时bln+a=0,所以此时亦有ln+(ab)=bln+a.由上判断知①正确;
对于②,此命题不成立,可令a=2,b=,则ab=,由定义ln+(ab)=0,ln+a+ln+b=ln2,所以ln+(ab)≠ln+a+ln+b;由此知②错误;
对于③,当a≥b>0时,≥1,此时≥0,当a≥b≥1时,ln+a-ln+b=lna-lnb=,此时命题成立;当a>1>b时,ln+a-ln+b=lna,此时,故命题成立;同理可验证当1>a≥b>0时,成立;当<1时,同理可验证是正确的,故③正确;
对于④,可分a≤1,b≤1与两者中仅有一个小于等于1、两者都大于1三类讨论,依据定义判断出④是正确的
故答案为①③④