由题意,x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2,考察(x2-1)2,发现当x=1时,其值为0,再对照不等式左边的0,可由两边夹的方式得到参数a,b满足的方程,再令f(x)=x4-x3+ax+b,即f(x)≥0在x≥0恒成立,利用导数研究函数在x≥0的极值,即可得出参数所满足的另一个方程,由此解出参数a,b的值,问题即可得解
【解析】
验证发现,
当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0,
当x=0时,可得0≤b≤1,结合a+b=0可得-1≤a≤0
令f(x)=x4-x3+ax+b,即f(1)=a+b=0
又f′(x)=4x3-3x2+a,f′′(x)=12x2-6x,
令f′′(x)>0,可得x>,则f′(x)=4x3-3x2+a在[0,]上减,在[,+∞)上增
又-1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0
又x≥0时恒有0≤x4-x3+ax+b,结合f(1)=a+b=0知,1必为函数f(x)=x4-x3+ax+b的极小值点,也是最小值点
故有f′(1)=1+a=0,由此得a=-1,b=1
故ab=-1
故答案为-1