(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;
(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,-1),可求cos<,>,即为所求正弦值.
【解析】
(Ⅰ)取AB的中点O,连接OC,OA1,A1B,
因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,
所以△AA1B为等边三角形,所以OA1⊥AB,
又因为OC∩OA1=O,所以AB⊥平面OA1C,
又A1C⊂平面OA1C,故AB⊥A1C;
(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,
所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.
以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,
可得A(1,0,0),A1(0,,0),C(0,0,),B(-1,0,0),
则=(1,0,),=(-1,,0),=(0,-,),
设=(x,y,z)为平面BB1C1C的法向量,则,即,
可取y=1,可得=(,1,-1),故cos<,>==,
故直线A1C与平面BB1C1C所成角的正弦值为.