根据充要条件的定义可知,只要看“b2-4ac<0”与“函数f(x)=ax2+bx+c的图象恒在x轴上方”能否相互推出即可.
【解析】
若a≠0,欲保证函数f(x)=ax2+bx+c的图象恒在x轴上方,则必须保证抛物线开口向上,且与x轴无交点;
则a>0且△=b2-4ac<0.
但是,若a=0时,如果b=0,c>0,则函数f(x)=ax2+bx+c=c的图象恒在x轴上方,不能得到△=b2-4ac<0;
反之,“b2-4ac<0”并不能得到“函数f(x)=ax2+bx+c的图象恒在x轴上方”,如a<0时.
从而,“b2-4ac<0”是“函数f(x)=ax2+bx+c的图象恒在x轴上方”的既非充分又非必要条件.
故选D.