(1)由△F1B1B2为等边三角形可得a=2b,又c=1,集合a2=b2+c2可求a2,b2,则椭圆C的方程可求;
(2)由给出的椭圆C的短轴长为2,结合c=1求出椭圆方程,分过点F2的直线l的斜率存在和不存在讨论,当斜率存在时,把直线方程和椭圆方程联立,由根与系数关系写出两个交点的横坐标的和,把转化为数量积等于0,代入坐标后可求直线的斜率,则直线l的方程可求.
【解析】
(1)设椭圆C的方程为.
根据题意知,解得,
故椭圆C的方程为.
(2)由2b=2,得b=1,所以a2=b2+c2=2,得椭圆C的方程为.
当直线l的斜率不存在时,其方程为x=1,不符合题意;
当直线l的斜率存在时,设直线l的方程为y=k(x-1).
由,得(2k2+1)x2-4k2x+2(k2-1)=0.
设P(x1,y1),Q(x2,y2),则
,
因为,所以,即
=
=
=,解得,即k=.
故直线l的方程为或.