满分5 > 高中数学试题 >

已知函数f(x)=的图象为曲线C,函数g(x)=ax+b的图象为直线l. (1)...

已知函数f(x)=manfen5.com 满分网的图象为曲线C,函数g(x)=manfen5.com 满分网ax+b的图象为直线l.
(1)当a=2,b=-3时,求F(x)=f(x)-g(x)的最大值;
(2)设直线l与曲线C的交点的横坐标分别为x1,x2,且x1≠x2,求证:(x1+x2)g(x1+x2)>2.
(1)由a=2,b=-3,知,x∈(0,1),F'(x)>0,F'(x)单调递增,x∈(1,+∞),F'(x)<0,F'(x)单调递减,由此能求出F(x)=f(x)-g(x)的最大值. (2)设x1<x2,要证(x1+x2)g(x1+x2)>2,只需证,由此入手,能够证明(x1+x2)g(x1+x2)>2. 【解析】 (1)∵, , x∈(0,1),F'(x)>0,F'(x)单调递增, x∈(1,+∞),F'(x)<0,F'(x)单调递减, ∴F(x)max=F(1)=2 (2)不妨设x1<x2,要证(x1+x2)g(x1+x2)>2,只需证, ,, ∵, ∴,即 ,∴, 令,x∈(x1,+∞).只需证, ,令 ,则 ,G(x)在x∈(x1,+∞)单调递增. G(x)>G(x1)=0,∴H′(x)>0,∴H(x)在x∈(x1,+∞)单调递增.H(x)>H(x1)=0, H(x)=(x+x1)ln-2(x-x1)>0,∴(x1+x2)g(x1+x2)>2.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设C2与x轴交于点Q,不同的两点R,S在C2上,且满足manfen5.com 满分网,求manfen5.com 满分网的取值范围.
查看答案
f(x)对任意x∈R都有manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网manfen5.com 满分网的值;
(Ⅱ)数列{an}满足:an=f(0)+manfen5.com 满分网,数列{an}是等差数列吗?请给予证明;
(Ⅲ)令manfen5.com 满分网.试比较Tn与Sn的大小.
查看答案
如图,侧棱垂直底面的三棱柱ABC-A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0).
(Ⅰ)当AA1=AB=AC时,求证:A1C⊥平面ABC1
(Ⅱ)若二面角A-BC1-C的平面角的余弦值为manfen5.com 满分网,试求实数t的值.

manfen5.com 满分网 查看答案
某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各两张,让孩子从盒子里任取3张卡片,按卡片上的最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量X的分布列及数学期望;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)在△ABC中,若f(C)=2,2sinB=cos(A-C)-cos(A+C),求tanA的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.