满分5 > 高中数学试题 >

已知函数f(x)=x2lnx. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)证明:对...

已知函数f(x)=x2lnx.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).
(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有manfen5.com 满分网
(Ⅰ)函数的定义域为(0,+∞),求导数令f′(x)=0,可解得x=,由导数在(0,),和( ,+∞)的正负可得单调性;(Ⅱ)当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞),由(Ⅰ)可得函数h(x)的单调性,可得结论;(Ⅲ)令u=lns,原命题转化为0<lnu<,一方面由f(s)的单调性,可得u>1,从而lnu>0成立,另一方面,令F(u)=lnu-,u>1,通过函数的单调性可得极值最值,进而得证. 【解析】 (Ⅰ)由题意可知函数的定义域为(0,+∞), 求导数可得f′(x)=2xlnx+x2•=2xlnx+x=x(2lnx+1), 令f′(x)=0,可解得x=, 当x变化时,f′(x),f(x)的变化情况如下表:  x (0,)    ( ,+∞)  f′(x) -  0 +  f(x) 单调递减 极小值  单调递增  所以函数f(x)的单调递减区间为(0,),单调递增区间为( ,+∞) (Ⅱ)证明:当0<x≤1时,f(x)≤0,设t>0,令h(x)=f(x)-t,x∈[1,+∞), 由(Ⅰ)可知,h(x)在区间(1,+∞)单调递增,h(1)=-t<0,h(et)=e2tlnet-t=t(e2t-1)>0, 故存在唯一的s∈(1,+∞),使得t=f(s)成立; (Ⅲ)证明:因为s=g(t),由(Ⅱ)知,t=f(s),且s>1, 从而====,其中u=lns, 要使成立,只需0<lnu<, 当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾, 所以s>e,即u>1,从而lnu>0成立, 另一方面,令F(u)=lnu-,u>1,F′(u)=, 令F′(u)=0,可解得u=2, 当1<u<2时,F′(u)>0,当u>2时,F′(u)<0, 故函数F(u)在u=2处取到极大值,也是最大值F(2)=ln2-1<0, 故有F(u)=lnu-<0,即lnu<, 综上可证:当t>e2时,有成立.
复制答案
考点分析:
相关试题推荐
已知首项为manfen5.com 满分网的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设manfen5.com 满分网,求数列{Tn}的最大项的值与最小项的值.
查看答案
设椭圆manfen5.com 满分网的左焦点为F,离心率为manfen5.com 满分网,过点F且与x轴垂直的直线被椭圆截得的线段长为manfen5.com 满分网
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若manfen5.com 满分网,求k的值.
查看答案
manfen5.com 满分网如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为manfen5.com 满分网,求线段AM的长.
查看答案
一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4; 白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).
(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.
(Ⅱ)再取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.