满分5 > 高中数学试题 >

已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(,). (1)求椭圆的方程;...

manfen5.com 满分网已知中心在原点O,焦点在x轴上,离心率为manfen5.com 满分网的椭圆过点(manfen5.com 满分网manfen5.com 满分网).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
(1)设出椭圆的方程,将已知点代入椭圆的方程及利用椭圆的离心率公式得到关于椭圆的三个参数的等式,解方程组求出a,b,c的值,代入椭圆方程即可. (2)设出直线的方程,将直线方程与椭圆方程联立,消去x得到关于y的二次方程,利用韦达定理得到关于两个交点的坐标的关系,将直线OP,PQ,OQ的斜率用坐标表示,据已知三个斜率成等比数列,列出方程,将韦达定理得到的等式代入,求出k的值,利用判别式大于0得到m的范围,将△OPQ面积用m表示,求出面积的范围. 【解析】 (1)由题意可设椭圆方程为(a>b>0),则 则故 所以,椭圆方程为. (2)由题意可知,直线l的斜率存在且不为0, 故可设直线l的方程为y=kx+m(m≠0),P(x1,y1),Q(x2,y2), 由消去y得 (1+4k2)x2+8kmx+4(m2-1)=0, 则△=64k2b2-16(1+4k2b2)(b2-1)=16(4k2-m2+1)>0, 且,. 故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2. 因为直线OP,PQ,OQ的斜率依次成等比数列, 所以=k2, 即+m2=0,又m≠0, 所以k2=,即k=. 由于直线OP,OQ的斜率存在,且△>0,得 0<m2<2且m2≠1. 设d为点O到直线l的距离, 则S△OPQ=d|PQ|=|x1-x2||m|=, 所以S△OPQ的取值范围为(0,1).
复制答案
考点分析:
相关试题推荐
如图,ABC-A1B1C1中,侧棱与底面垂直,AB⊥AC,AB=AC=AA1=2,点M,N分别为A1B和B1C1的中点.
(1)证明:MN∥平面A1ACC1
(2)求二面角N-MC-A的正弦值.

manfen5.com 满分网 查看答案
在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,情况如下表:
科目甲科目乙总计
第一小组156
第二小组246
总计3912
现从第一小组、第二小组中各任选2人分析选课情况.
(1)求选出的4 人均选科目乙的概率;
(2)设ξ为选出的4个人中选科目甲的人数,求ξ的分布列和数学期望.
查看答案
已知f(x)=Asin(ωx+φ)+1,(x∈R,其中manfen5.com 满分网)的周期为π,且图象上一个最低点为M(manfen5.com 满分网
(1)求f(x)的解析式;
(2)当manfen5.com 满分网时,求f(x)的值域.
查看答案
manfen5.com 满分网(几何证明选做题)
如图圆O的直径AB=6,P是AB的延长线上一点,过点P作圆O的切线,切点为C,连接AC,若∠CPA=30°,则PC=    查看答案
(坐标系与参数方程选做题)
若直线l的极坐标方程为manfen5.com 满分网,曲线C:ρ=1上的点到直线l的距离为d,则d的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.