满分5 >
高中数学试题 >
已知函数f(x)=x-1+(a∈R,e为自然对数的底数). (Ⅰ)若曲线y=f(...
已知函数f(x)=x-1+
(a∈R,e为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.
考点分析:
相关试题推荐
如图,在等腰直角△OPQ中,∠POQ=90°,OP=2
,点M在线段PQ上,
(Ⅰ)若OM=
,求PM的长;
(Ⅱ)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.
查看答案
如图,抛物线E:y
2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.
(I)若点C的纵坐标为2,求|MN|;
(II)若|AF|
2=|AM|•|AN|,求圆C的半径.
查看答案
某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
P(x2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
(I)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(II)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:
(注:此公式也可以写成k
2=
)
查看答案
如图,在四棱柱P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(I)当正视方向与向量
的方向相同时,画出四棱锥P-ABCD的正视图(要求标出尺寸,并写出演算过程);
(II)若M为PA的中点,求证:DM∥平面PBC;
(III)求三棱锥D-PBC的体积.
查看答案
已知等差数列{a
n}的公差d=1,前n项和为S
n.
(I)若1,a
1,a
3成等比数列,求a
1;
(II)若S
5>a
1a
9,求a
1的取值范围.
查看答案