满分5 > 高中数学试题 >

已知函数f(x)=x-1+(a∈R,e为自然对数的底数). (Ⅰ)若曲线y=f(...

已知函数f(x)=x-1+manfen5.com 满分网(a∈R,e为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.
(Ⅰ)依题意,f′(1)=0,从而可求得a的值; (Ⅱ)f′(x)=1-,分①a≤0时②a>0讨论,可知f(x)在∈(-∞,lna)上单调递减,在(lna,+∞)上单调递增,从而可求其极值; (Ⅲ)令g(x)=f(x)-(kx-1)=(1-k)x+,则直线l:y=kx-1与曲线y=f(x)没有公共点⇔方程g(x)=0在R上没有实数解.分k>1与k≤1讨论即可得答案. 【解析】 (Ⅰ)由f(x)=x-1+,得f′(x)=1-,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴, ∴f′(1)=0,即1-=0,解得a=e. (Ⅱ)f′(x)=1-, ①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以f(x)无极值; ②当a>0时,令f′(x)=0,得ex=a,x=lna, x∈(-∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0; ∴f(x)在∈(-∞,lna)上单调递减,在(lna,+∞)上单调递增, 故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值. 综上,当当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值. (Ⅲ)当a=1时,f(x)=x-1+,令g(x)=f(x)-(kx-1)=(1-k)x+, 则直线l:y=kx-1与曲线y=f(x)没有公共点, 等价于方程g(x)=0在R上没有实数解. 假设k>1,此时g(0)=1>0,g()=-1+<0, 又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1. 又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解, 所以k的最大值为1
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在等腰直角△OPQ中,∠POQ=90°,OP=2manfen5.com 满分网,点M在线段PQ上,
(Ⅰ)若OM=manfen5.com 满分网,求PM的长;
(Ⅱ)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值. 查看答案
manfen5.com 满分网如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.
(I)若点C的纵坐标为2,求|MN|;
(II)若|AF|2=|AM|•|AN|,求圆C的半径.
查看答案
某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
manfen5.com 满分网
(I)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(II)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:manfen5.com 满分网(注:此公式也可以写成k2=manfen5.com 满分网
查看答案
manfen5.com 满分网如图,在四棱柱P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(I)当正视方向与向量manfen5.com 满分网的方向相同时,画出四棱锥P-ABCD的正视图(要求标出尺寸,并写出演算过程);
(II)若M为PA的中点,求证:DM∥平面PBC;
(III)求三棱锥D-PBC的体积.
查看答案
已知等差数列{an}的公差d=1,前n项和为Sn
(I)若1,a1,a3成等比数列,求a1
(II)若S5>a1a9,求a1的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.