满分5 > 高中数学试题 >

设f(x)是定义在[a,b]上的函数,用分点T:a=x<x1<…<xi-1<xi...

设f(x)是定义在[a,b]上的函数,用分点T:a=x<x1<…<xi-1<xi<…xn=b将区间[a,b]任意划分成n个小区间,如果存在一个常数M>0,使得和manfen5.com 满分网≤M(i=1,2,…,n)恒成立,则称f(x)为[a,b]上的有界变差函数.
(1)函数f(x)=x2在[0,1]上是否为有界变差函数?请说明理由;
(2)设函数f(x)是[a,b]上的单调递减函数,证明:f(x)为[a,b]上的有界变差函数;
(3)若定义在[a,b]上的函数f(x)满足:存在常数k,使得对于任意的x1、x2∈[a,b]时,|f(x1)-f(x2)|≤k•|x1-x2|.证明:f(x)为[a,b]上的有界变差函数.
(1)利用函数在[0,1]是增函数,去掉绝对值,将连和符号用函数值的和表示出,求出值为,取M大于等于此值,满足有界变差函数的定义 (2)利用函数为减函数,将连和符号中的绝对值符号去掉,将连和用函数值的差表示出,求出连和的值,将M取此值,满足有界变差函数的定义. (3)利用已知不等式,将函数值差的连和表示成自变量差的连和,去掉绝对值,将连和写成自变量差的和形式,求出连和的值,找到M,满足有界变差函数的定义. 【解析】 (1)∵f(x)=x2在[0,1]上是增函数∴对任意划分Tf(xn)>f(xn-1) |f(xi)-f(xi-1)|=f(x1)-f(x)+…+f(xn)-f(xn-1)=f(1)-f(0)=1 取常数M≥1,则和式(i=1,2,3…n)恒成立 所以函数f(x)在[0,1]是有界变差函数 (2)∵函数f(x)是[a,b]上的单调递减函数 任意的划分T,Ta=x<x1<…<xi-1<xi<…<xn=b ∴+f(xn) ∴一定存在一个常数M>0,使f(a)-f(b)≤M 故f(x)为[a,b]上有界变差函数 ∵|f(x1)-f(x2)|≤k|x1-x2| ∴对任意的划分T,a=x<x1<…<xi-1<xi<…<xn=b ==k(b-a) 取常数M=k(b-a) 由有界变差函数定义知f(x)为有界变差函数.
复制答案
考点分析:
相关试题推荐
如图是曲柄连杆机构的示意图,当曲柄CB绕点C旋转时,通过连杆AB的传递,活塞作直线往复运动.当曲柄在CB位置时,曲柄和连杆成一条直线,连杆的端点A在A处,设连杆AB的长为lmm,曲柄CB的长为rmm,l>r.
(1)若l=300mm,r=80mm,当曲柄CB按顺时针方向旋转角为θ时,连杆的端点A此时离A的距离为AA=110mm,求cosθ的值;
(2)当曲柄CB按顺时针方向旋转角θ为任意角时,试用l、r、θ表示活塞移动的距离(即连杆的端点A移动的距离AA)
manfen5.com 满分网
查看答案
已知△ABC的边AB边所在直线的方程为x-3y-6=0,M(2,0)满足manfen5.com 满分网,点T(-1,1)在AC边所在直线上且满足manfen5.com 满分网
(1)求AC边所在直线的方程;
(2)求△ABC外接圆的方程;
(3)若动圆P过点N(-2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.

manfen5.com 满分网 查看答案
如图,多面体EF-ABCD中,ABCD是梯形,AB∥CD,ACFE是矩形,面ACFE⊥面ABCD,AD=DC=CB=AE=a,∠ACB=manfen5.com 满分网
(1)若M是棱EF上一点,AM∥平面BDF,求EM;
(2)求二面角B-EF-D的平面角的余弦值.

manfen5.com 满分网 查看答案
某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:
(Ⅰ)填充上表;
(Ⅱ)若以上表频率作为概率,且每天的销售量相互独立.
①5天中该种商品恰好有2天的销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,ξ表示该种商品两天销售利润的和(单位:千元),求ξ的分布列.
日销售量11.52
频数102515
频率0.2

查看答案
已知f(x)=2sin(manfen5.com 满分网),集合M={x||f(x)|=2,x>0},把M中的元素从小到大依次排成一行,得到数列{an}(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b1=1,bn+1=bn+a2n,求{bn}的通项公式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.