满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90...

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=manfen5.com 满分网AD=1,CD=manfen5.com 满分网
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.

manfen5.com 满分网
(Ⅰ)法一:由AD∥BC,BC=AD,Q为AD的中点,知四边形BCDQ为平行四边形,故CD∥BQ.由∠ADC=90°,知QB⊥AD.由平面PAD⊥平面ABCD,知BQ⊥平面PAD.由此能够证明平面PQB⊥平面PAD. 法二:由AD∥BC,BC=AD,Q为AD的中点,知四边形BCDQ为平行四边形,故CD∥BQ.由∠ADC=90°,知∠AQB=90°.由PA=PD,知PQ⊥AD,故AD⊥平面PBQ.由此证明平面PQB⊥平面PAD. (Ⅱ)由PA=PD,Q为AD的中点,知PQ⊥AD.由平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,知PQ⊥平面ABCD.以Q为原点建立空间直角坐标系,利用向量法能够求出t=3. (本小题满分15分) (Ⅰ)证法一:∵AD∥BC,BC=AD,Q为AD的中点, ∴四边形BCDQ为平行四边形,∴CD∥BQ. ∵∠ADC=90°∴∠AQB=90°,即QB⊥AD. 又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴BQ⊥平面PAD. ∵BQ⊂平面PQB,∴平面PQB⊥平面PAD. …(9分) 证法二:AD∥BC,BC=AD,Q为AD的中点, ∴四边形BCDQ为平行四边形,∴CD∥BQ. ∵∠ADC=90°∴∠AQB=90°. ∵PA=PD,∴PQ⊥AD. ∵PQ∩BQ=Q,∴AD⊥平面PBQ. ∵AD⊂平面PAD,∴平面PQB⊥平面PAD.…(9分) 【解析】 (Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD. ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PQ⊥平面ABCD. 如图,以Q为原点建立空间直角坐标系. 则平面BQC的法向量为; Q(0,0,0),,,. 设M(x,y,z),则,, ∵, ∴,∴…(12分) 在平面MBQ中,,, ∴平面MBQ法向量为.…(13分) ∵二面角M-BQ-C为30°, ∴, ∴t=3.…(15分)
复制答案
考点分析:
相关试题推荐
在△ABC中,a,b,c分别是角A,B,C所对的边,且manfen5.com 满分网
(1)求角A的大小;
(2)若manfen5.com 满分网,求△ABC面积的最大值.
查看答案
已知函数f(x)=x3-3x+1,x∈R,,A={x|t≤x≤t+1},B={x||f(x)|≥1}集合A∩B只含有一个元素,则实数t的取值范围是    查看答案
已知F1,F2分别为椭圆manfen5.com 满分网的左、右焦点,椭圆内一点M的坐标为(2,-6),P为椭圆上的一个动点,则|PM|+|PF2|的最大值是    查看答案
manfen5.com 满分网已知函数f(x)=manfen5.com 满分网,若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是    查看答案
随机变量ξ的分布列如下:其中manfen5.com 满分网成等差数列,若manfen5.com 满分网,则Dξ的值是   
ξ-11
Pabc
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.