满分5 > 高中数学试题 >

已知椭圆的离心率为. (I)若原点到直线x+y-b=0的距离为,求椭圆的方程; ...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网
(I)若原点到直线x+y-b=0的距离为manfen5.com 满分网,求椭圆的方程;
(II)设过椭圆的右焦点且倾斜角为45°的直线l和椭圆交于A,B两点.
(i)当manfen5.com 满分网,求b的值;
(ii)对于椭圆上任一点M,若manfen5.com 满分网,求实数λ,μ满足的关系式.
(I)由题意知b=2,a2=12,b2=4.由此可知椭圆的方程为. (II)(i)由题意知椭圆的方程可化为:x2+3y2=3b2,AB:,所以.设A(x1,y1),B(x2,y2),,所以b=1. (II)(ii)显然与可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量,有且只有一对实数λ,μ,使得等成立.同上经可知λ2+μ2=1. 【解析】 (I)∵,∴∵,∴∵,∴解得a2=12,b2=4. 椭圆的方程为.(4分) (II)(i)∵,∴.椭圆的方程可化为:x2+3y2=3b2① 易知右焦点,据题意有AB:② 由①,②有:③ 设A(x1,y1),B(x2,y2),∴b=(18分) (II)(ii)显然与可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量,有且只有一对实数λ,μ,使得等成立. 设M(x,y),∵(x,y)=λ(x1,y1)+μ(x2,y2),∴x=λx1+μx2,y=λy1+μy2, 又点M在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2④ 由③有: 则3b2-9b2+6b2=0⑤ 又A,B在椭圆上,故有x12+3y12=3b2,x22+3y22=3b2⑥ 将⑥,⑤代入④可得:λ2+μ2=1.(14分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(Ⅰ)若a=2,求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调区间.
查看答案
已知几何体A-BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(Ⅰ)求此几何体的体积V的大小;
(Ⅱ)求异面直线DE与AB所成角的余弦值;
(Ⅲ)试探究在棱DE上是否存在点Q,使得AQ⊥BQ,若存在,求出DQ的长,不存在说明理由.

manfen5.com 满分网 查看答案
甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,现在从这两个箱子里各随机摸出2个球,求
(Ⅰ)摸出3个白球的概率;
(Ⅱ)摸出至少两个白球的概率;
(Ⅲ)若将摸出至少两个白球记为1分,则一个人有放回地摸2次,求得分X的分布列及数学期望.
查看答案
在△ABC中,角A,B,C的对边分别为manfen5.com 满分网,a=5,△ABC的面积为manfen5.com 满分网
(Ⅰ)求b,c的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题:
①集合S={a+bi|(a,b为整数,i为虚数单位)}为封闭集;
②若S为封闭集,则一定有0∈S;
③封闭集一定是无限集;
④若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集.
其中真命题是    .(写出所有真命题的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.