满分5 > 高中数学试题 >

设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数)...

设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )
A.-3
B.-1
C.1
D.3
首先由奇函数性质f(0)=0求出f(x)的解析式,然后利用定义f(-x)=-f(x)求f(-1)的值. 【解析】 因为f(x)为定义在R上的奇函数, 所以f(0)=2+2×0+b=0, 解得b=-1, 所以当x≥0时,f(x)=2x+2x-1, 又因为f(x)为定义在R上的奇函数, 所以f(-1)=-f(1)=-(21+2×1-1)=-3, 故选A.
复制答案
考点分析:
相关试题推荐
下列函数中,周期为π,且在manfen5.com 满分网上为减函数的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知f(x)的图象在[a,b]上连续,则“f(a)•f(b)<0”是“f(x)在(a,b)内有零点”的( )条件.
A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必要
查看答案
已知集合P={x|y=log2(x-3)},manfen5.com 满分网,则下列选项正确的是( )
A.P=Q
B.P∩Q=∅
C.Pmanfen5.com 满分网Q
D.Qmanfen5.com 满分网P
查看答案
已知函数manfen5.com 满分网
(I)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(II)当manfen5.com 满分网时,讨论f(x)的单调性.
查看答案
manfen5.com 满分网如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C2的短轴为MN,且C1,C2的离心率都为e.直线l⊥MN.l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(Ⅰ)e=manfen5.com 满分网,求|BC|与|AD|的比值;
(Ⅱ)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.