满分5 > 高中数学试题 >

已知函数f(x)=lnx-; (I)若a>0,试判断f(x)在定义域内的单调性;...

已知函数f(x)=lnx-manfen5.com 满分网
(I)若a>0,试判断f(x)在定义域内的单调性;
(II)若f(x)在[1,e]上的最小值为manfen5.com 满分网,求a的值;
(III)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.
(I)先确定函数f(x)的定义域,再求导函数,从而可判定f(x)在定义域内的单调性; (II)由(I)可知,f′(x)=.再分类讨论:a≥-1,f(x)在[1,e]上为增函数;a≤-e,f(x)在[1,e]上为减函数;e<a<-1,f(x)在(1,-a)上为减函数,f(x)在(-a,e)上为增函数,利用f(x)在[1,e]上的最小值为,可求a的值; (III)先将不等式整理,再分离参数,构建新函数,利用单调性求出函数值的范围,即可求出a的取值范围. 【解析】 (I)由题意f(x)的定义域为(0,+∞),且f'(x)=…(2分) ∵a>0, ∴f'(x)>0, 故f(x)在(0,+∞)上是单调递增函数   …(4分) (II)由(I)可知,f′(x)=. (1)若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数, ∴[f(x)]min=f(1)=-a=, ∴a=-(舍去) …(5分) (2)若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数, ∴[f(x)]min=f(e)=1-(舍去)…(6分) (3)若-e<a<-1,令f'(x)=0得x=-a,当1<x<-a时,f'(x)<0, ∴f(x)在(1,-a)上为减函数,f(x)在(-a,e)上为增函数, ∴[f(x)]min=f(-a)=ln(-a)+1= ∴[f(x)]min=f(-a)=ln(-a)+1= ∴a=-.…(8分) 综上所述,a=-. (III)∵f(x)<x2 ∴lnx- 又x>0,∴a>xlnx-x3…(9分) 令g(x)=xlnx-x3,h(x)=g′(x)=1+lnx-3x2, ∴h'(x)=∵x∈(1,+∞)时,h'(x)<0, ∴h(x)在(1,+∞)上是减函数,…(10分) ∴h(x)<h(1)=-2<0 即g'(x)<0∴g(x)在(1,+∞)上也是减函数, ∴g(x)在(1,+∞)上是减函数 ∴g(x)<g(1)=-1 ∴当a≥-1时,f(x)<x2在(1,+∞)上恒成立.…(12分) ∴a≥-1
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,其中左焦点F(-2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
查看答案
如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1、DB的中点.
(Ⅰ)求证:EF∥平面ABC1D1
(Ⅱ)求证:EF⊥B1C.

manfen5.com 满分网 查看答案
已知点(1,2)是函数f(x)=ax(a>0且a≠1)的图象上一点,数列{an}的前n项和Sn=f(n)-1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)将数列{an}前2013项中的第3项,第6项,…,第3k项删去,求数列{an}前2013项中剩余项的和.
查看答案
某普通高中共有教师360人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示:
第一批次第二批次第三批次
女教师86xy
男教师9466z
已知在全体教师中随机抽取1名,抽到第二、三批次中女教师的概率分别是0.15、0.1.
(Ⅰ)求x,y,z的值;
(Ⅱ)为了调查研修效果,现从三个批次中按1:60的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?
(Ⅲ)若从(Ⅱ)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.
查看答案
已知a,b,c为△ABC的内角A,B,C的对边,满足manfen5.com 满分网,函数f(x)=sinωx(ω>0)在区间manfen5.com 满分网上单调递增,在区间manfen5.com 满分网上单调递减.
(Ⅰ)证明:b+c=2a;
(Ⅱ)若manfen5.com 满分网,证明:△ABC为等边三角形.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.