某市甲、乙两校高二级学生分别有1100人和1000人,为了解两校全体高二级学生期 末统考的数学成绩情况,采用分层抽样方法从这两所学校共抽取105名高二学生的数学 成绩,并得到成绩频数分布表如下,规定考试成绩在[120,150]为优秀.
甲校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
频数 | 2 | 3 | 10 | 15 | 15 | x | 3 | 1 |
乙校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
频数 | 1 | 2 | 9 | 8 | 10 | 10 | y | 3 |
(1)求表中x与y的值;
(2)由以上统计数据完成下面2x2列联表,问是否有99%的把握认为学生数学成绩优秀 与所在学校有关?
(3)若以样本的频率作为概率,现从乙校总体中任取 3人(每次抽取看作是独立重复的),求优秀学生人数ξ的分布列和数学期望.(注:概率值可用分数表示)
考点分析:
相关试题推荐
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响.我国PM2.5标准如表1所示.我市环保局从市区四个监测点2012年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图如图所示.
(1)求这15天数据的平均值(结果保留整数).
(2)从这15天的数据中任取3天的数据,记表示其中空气质量达到一级的天数ξ,求ξ的分布列和数学期望;
(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中大约有多少天的空气质量达到一级.
PM2.5日均值(微克/立方米)范围 | 空气质量级别 |
(1,35] | I |
(35,75] | II |
大于75 | 超标 |
查看答案
某个部件由两个电子元件按图(2)方式连接而成,元件1或元件2正常工作,则部件正常工作,设两个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,50
2),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为
.
查看答案
在某项测量中,测量结果ξ服从正态分布N(1,σ
2)(σ>0),若ξ在(0,1)内的概率为0.4,则ξ在(0,2)内取值的概率为
.
查看答案
某商场销售甲、乙、丙三种不同型号的钢笔,甲、乙、丙三种型号钢笔数量之比依次为 2:3:4.现用分层抽样的方法抽出一个容量为n的样本,其中甲型钢笔有12支,则此样本容量n=
.
查看答案
某学校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程序的破坏,但可见部分如图,据此可以了解分数在[50,60)的频率为
,并且推算全班人数为
.
查看答案