将两个等式相加,利用立方和公式将得到的等式因式分解,提取公因式得到a2+a2010的值,利用等差数列的性质及数列的前n项和公式求出n项和.
【解析】
∵
(a2010-1)3+2011
①+②得
(a2-1)3+2011(a2-1)=1
(a2010-1)3+2011(a2010-1)=-1
二式相加,得
(a2-1+a2010-1)[(a2-1)2-(a2-1)(a2010-1)+(a2010-1)2]+2011((a2-1+a2010-1)=0
(a2-1+a2010-1)[(a2-1)2-(a2-1)(a2010-1)+(a2010-1)2+2011]=0
∴a2-1+a2010-1=0
a2+a2010=2
∴==2011
故选C.