已知f(x)=xlnx,g(x)=-x
2+ax-3.
(1)已知函数h(x)=g(x)+ax
3的一个极值点为1,求a的取值;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.
考点分析:
相关试题推荐
已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x
2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,并根据
(1)写出函数f(x)(x∈R)的增区间;
(2)写出函数f(x)(x∈R)的解析式;
(3)若函数g(x)=f(x)-2ax+2(x∈[1,2]),求函数g(x)的最小值.
查看答案
已知函数f(x)=-2sinxcosx+2cos
2x+1
(1)设方程f(x)-1=0在(0,π)内有两个零点x
1,x
2,求x
1+x
2的值;
(2)若把函数y=f(x)的图象向左移动m(m>0)个单位,再向下平移2个单位,使所得函数的图象关于y轴对称,求m的最小值.
查看答案
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
)
查看答案
在△ABC中,设A、B、C的对边分别为a、b、c,向量
=(cosA,sinA),
=(
),若|
|=2.(1)求角A的大小;(2)若
的面积.
查看答案
风景秀美的凤凰湖畔有四棵高大的银杏树,记做A、B、P、Q,欲测量P、Q两棵树和A、P两棵树之间的距离,但湖岸部分地方围有铁丝网不能靠近,现在可以方便的测得A、B两点间的距离为AB=100米,如图,同时也能测量出∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,则P、Q两棵树和A、P两棵树之间的距离各为多少?
查看答案