满分5 > 高中数学试题 >

已知数列{an}满足a1=1,an+1=2an+1(n∈N*). (I)求数列{...

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(I)求数列{an}的通项公式;
(II)若数列{bn}滿足manfen5.com 满分网,证明:数列{bn}是等差数列;
(Ⅲ)证明:manfen5.com 满分网
(I)整理题设递推式得an+1+1=2(an+1),推断出{an+1}是等差数列,进而求得an+1,则an可求. (II)根据题设等式可推断出2[(b1+b2+…+bn)-n]=nbn和2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.两式相减后整理求得bn+2-bn+1=bn+1-bn进而推断出{bn}是等差数列. (III)利用(1)中数列{an}的通项公式,利用不等式的传递性,推断出进而推断出;同时利用不等式的性质推断出,进而代入证明原式. 【解析】 (I)∵an+1=2an+1(n∈N*), ∴an+1+1=2(an+1), ∴{an+1}是以a1+1=2为首项,2为公比的等比数列. ∴an+1=2n. 即an=2n-1∈N*). (II)证明:∵ ∴. ∴2[(b1+b2+…+bn)-n]=nbn,① 2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.② ②-①,得2(bn+1-1)=(n+1)bn+1-nbn, 即(n-1)bn+1-nbn+2=0,nbn+2-(n+1)bn+1+2=0. ③-④,得nbn+2-2nbn+1+nbn=0, 即bn+2-2bn+1+bn=0, ∴bn+2-bn+1=bn+1-bn(n∈N*), ∴{bn}是等差数列. (III)证明:∵,k=1,2,,n, ∴. ∵,k=1,2,,n, ∴, ∴.
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=manfen5.com 满分网的零点个数.
查看答案
已知椭圆C的焦点为F1(-1,0)、F2(1,0),点manfen5.com 满分网在椭圆上.
(1)求椭圆C的方程;
(2)若抛物线y2=2px(p>0)与椭圆C相交于点M、N,当△OMN(O是坐标原点)的面积取得最大值时,求p的值.
查看答案
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,
(1)求证:BC∥平面C1B1N;
(2)求证:BN⊥平面C1B1N;
(3)求此几何体的体积.

manfen5.com 满分网 查看答案
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5


manfen5.com 满分网 查看答案
已知:函数manfen5.com 满分网的最小正周期为3π.
(1)求函数f(x)的解析式;
(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.