设A(x
A,y
A),B(x
B,y
B)为平面直角坐标系上的两点,其中x
A,y
A,Bx
B,y
B∈Z.令△x=x
B-x
A,△y=y
B-y
A,若|△x|+|△y=3,且|△x|-|△y|≠0,则称点B为点A的“相关点”,记作:B=i(A).
(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(Ⅱ)已知点H(9,3),L(5,3),若点M满足M=i(H),L=i(M),求点M的坐标;
(Ⅲ)已知P
(x
,y
)(x
∈Z,Y
∈Z)为一个定点,点列{P
i}满足:P
i=i(P
i-1),其中i=1,2,3,…,n,求|P
P
n|的最小值.
考点分析:
相关试题推荐
已知圆M:(x-
)
2+y
2=
,若椭圆C:
+
=1(a>b>0)的右顶点为圆M的圆心,离心率为
.
(I)求椭圆C的方程;
(II)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.
查看答案
函数f(x)=
x
3-kx,其中实数k为常数.
(I) 当k=4时,求函数的单调区间;
(II) 若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.
查看答案
在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且
.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.
查看答案
在某大学自主招生考试中,所有选报 II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.
( I)求该考场考生中“阅读与表达”科目中成绩为A的人数;
( II)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.
查看答案
已知函数f(x)=2-(
sinx-cosx)
2.
(Ⅰ)求f(
)的值和f(x)的最小正周期;
(Ⅱ)求函数在区间[-
,
]上的最大值和最小值.
查看答案