如图,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求证:AF∥平面BDE;
(2)求四面体B-CDE的体积.
考点分析:
相关试题推荐
某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组 | 频数 | 频率 |
(3.9,4.2] | 3 | 0.06 |
(4.2,4.5] | 6 | 0.12 |
(4.5,4.8] | 25 | x |
(4.8,5.1] | y | z |
(5.1,5.4] | 2 | 0.04 |
合计 | n | 1.00 |
(I)求频率分布表中未知量n,x,y,z的值;
(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c且满足csinA=acosC.
(I)求角C的大小;
(II)求
的最大值,并求取得最大值时角A,B的大小.
查看答案
(几何证明选做题)
如图圆O的直径AB=6,P是AB的延长线上一点,过点P作圆O的切线,切点为C,连接AC,若∠CPA=30°,则PC=
.
查看答案
(坐标系与参数方程选做题)
若直线l的极坐标方程为
,曲线C:ρ=1上的点到直线l的距离为d,则d的最大值为
.
查看答案
执行如图的程序框图,那么输出S的值是
.
查看答案