满分5 > 高中数学试题 >

如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=DB,点C为圆O上...

manfen5.com 满分网如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=manfen5.com 满分网DB,点C为圆O上一点,且BC=manfen5.com 满分网AC.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)求证:PA⊥CD;
(2)求二面角C-PB-A的余弦值.
(1)先利用平面几何知识与线面垂直的性质证线线垂直,由线线垂直⇒线面垂直,再由线面垂直⇒线线垂直; (2)通过作出二面角的平面角,证明符合定义,再在三角形中求解. 解析:(1)连接OC,由3AD=BD知,点D为AO的中点, 又∵AB为圆的直径,∴AC⊥BC, ∵AC=BC,∴∠CAB=60°, ∴△ACO为等边三角形,∴CD⊥AO. ∵点P在圆O所在平面上的正投影为点D, ∴PD⊥平面ABC,又CD⊂平面ABC, ∴PD⊥CD,PD∩AO=D, ∴CD⊥平面PAB,PA⊂平面PAB, ∴PA⊥CD. (2)过点D作DE⊥PB,垂足为E,连接CE, 由(1)知CD⊥平面PAB,又PB⊂平面PAB, ∴CD⊥PB,又DE∩CD=D, ∴PB⊥平面CDE,又CE⊂平面CDE, ∴CE⊥PB, ∴∠DEC为二面角C-PB-A的平面角. 由(1)可知CD=,PD=BD=3, ∴PB=3,则DE==, ∴在Rt△CDE中,tan∠DEC==, ∴cos∠DEC=,即二面角C-PB-A的余弦值为.
复制答案
考点分析:
相关试题推荐
某次运动会在我市举行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下2×2列联表:
喜爱运动不喜爱运动总计
1016
614
总计30
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)从女志愿者中抽取2人参加接待工作,若其中喜爱运动的人数为ξ,求ξ的分布列和均值.
参考公式:manfen5.com 满分网,其中n=a+b+c+d
参考数据:
P(K2≥k0.400.250.100.010
k0.7081.3232.7066.635

查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设manfen5.com 满分网,求f(x)的值域和单调递增区间.
查看答案
在极坐标系(ρ,θ)(0≤θ<2π)中,直线manfen5.com 满分网被圆ρ=2sinθ截得的弦的长是    查看答案
manfen5.com 满分网如图,⊙O的割线PAB交⊙O于A、B两点,割线PCD经过圆心,已知PA=6,manfen5.com 满分网,PO=12,则⊙O的半径为    查看答案
如图,是一程序框图,则输出结果为K=    ,S=   
manfen5.com 满分网
(说明,M=N是赋值语句,也可以写成M←N,或M:=N) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.