满分5 > 高中数学试题 >

已知,n∈N*. (1)若g(x)=f4(x)+2f5(x)+3f6(x),求g...

已知manfen5.com 满分网,n∈N*
(1)若g(x)=f4(x)+2f5(x)+3f6(x),求g(x)中含x2项的系数;
(2)若pn是fn(x)展开式中所有无理项的系数和,数列{an}是各项都大于1的数组成的数列,试用数学归纳法证明:pn(a1a2…an+1)≥(1+a1)(1+a2)…(1+an).
(1)确定函数g(x),利用二项式定理可得g(x)中含x2项的系数; (2)确定pn的表达式,根据数学归纳法的步骤,先证n=1时成立,再设n=k时成立,利用归纳假设证明n=k+时成立即可. (1)【解析】 g(x)=f4(x)+2f5(x)+3f6(x)=+2+3, ∴g(x)中含x2项的系数为=1+10+45=56.(3分) (2)证明:由题意,pn=2n-1.(5分) ①当n=1时,p1(a1+1)=a1+1,成立; ②假设当n=k时,pk(a1a2…ak+1)≥(1+a1)(1+a2)…(1+ak)成立, 当n=k+1时,(1+a1)(1+a2)…(1+ak)(1+ak+1)≤2k-1(a1a2…ak+1)(1+ak+1) =2k-1(a1a2…akak+1+a1a2…ak+ak+1+1).(*) ∵ak>1,a1a2…ak(ak+1-1)≥ak+1-1,即a1a2…akak+1+1≥a1a2…ak+ak+1, 代入(*)式得(1+a1)(1+a2)…(1+ak)(1+ak+1)≤2k(a1a2…akak+1+1)成立. 综合①②可知,pn(a1a2…an+1)≥(1+a1)(1+a2)…(1+an)对任意n∈N*成立.(10分)
复制答案
考点分析:
相关试题推荐
有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?
查看答案
manfen5.com 满分网的展开式中x2项的系数是15,则展开式的所有项系数的和是    查看答案
manfen5.com 满分网展开式中只有第六项的二项式系数最大,则展开式中的常数项等于    查看答案
A,B,C,D,E五人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻)那么不同的排法有    查看答案
6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.