(1)由BC∥平面PAD,利用线面平行的性质定理即可得到BC∥AD,再利用线面平行的判定定理即可证明AD∥平面PBC;
(2)自P作PH⊥AB于H,由平面PAB⊥平面ABCD,可得PH⊥平面ABCD.于是BC⊥PH.又BC⊥PB,可得BC⊥平面PAB,进而得到面面垂直.
证明:(1)因为BC∥平面PAD,
而BC⊂平面ABCD,平面ABCD∩平面PAD=AD,
所以BC∥AD.
因为AD⊄平面PBC,BC⊂平面PBC,
所以AD∥平面PBC.
(2)自P作PH⊥AB于H,因为平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,
所以PH⊥平面ABCD.
因为BC⊂平面ABCD,所以BC⊥PH.
因为∠PBC=90°,所以BC⊥PB,
而∠PBA≠90°,于是点H与B不重合,即PB∩PH=H.
因为PB,PH⊂平面PAB,所以BC⊥平面PAB.
因为BC⊂平面PBC,故平面PBC⊥平面PAB.