由题意得,F(x)=,再写出|f(x)|的表达式,它和F(x)并不是同一个函数,故①错误;利用函数奇偶性的定义可证得当x>0或x<0时,F(-x)=-F(x);故函数F(x)是奇函数,②正确;当a<0时,F(x)在(0,+∞)上是减函数,利用函数的单调性可得③正确.
【解析】
由题意得,F(x)=,
而|f(x)|=,它和F(x)并不是同一个函数,故①错误;
∵函数f(x)=a•2|x|+1是偶函数,
当x>0时,-x<0,则F(-x)=-f(-x)=-f(x)=-F(x);
当x<0时,-x>0,则F(-x)=f(-x)=f(x)=-F(x);
故函数F(x)是奇函数,②正确;
当a<0时,F(x)在(0,+∞)上是减函数,
若mn<0,m+n>0,总有m>-n>0,
∴F(m)<F(-n),即f(m)<-F(n),
∴F(m)+F(n)<0成立,故③正确.
故选C.