满分5 > 高中数学试题 >

如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2...

如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.
(Ⅰ)求证:FG∥平面PDE;
(Ⅱ)求证:平面FGH⊥平面AEB;
(Ⅲ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

manfen5.com 满分网
(Ⅰ)利用三角形的中位线的性质证明FG∥PE,再根据直线和平面平行的判定定理证得结论. (Ⅱ)先证明EA⊥CB、CB⊥AB,可得CB⊥平面ABE.再根据FH∥BC,则FH⊥平面ABE. (Ⅲ)在线段PC上存在一点M,满足条件.先证明PE=BE,根据F为PB的中点,可得EF⊥PB.要使PB⊥平面EFM,只需使PB⊥FM即可.此时,则△PFM∽△PCB,根据对应边成比列 求得PB、PF、PC的值,可得PM的值. (Ⅰ)证明:因为F,G分别为PB,BE的中点,所以FG∥PE. 又因为FG⊄平面PED,PE⊂平面PED,所以,FG∥平面PED.…(4分) (Ⅱ)因为EA⊥平面ABCD,所以EA⊥CB. 又因为CB⊥AB,AB∩AE=A,所以CB⊥平面ABE. 由已知F,H分别为线段PB,PC的中点,所以FH∥BC,则FH⊥平面ABE. 而FH⊂平面FGH,所以平面FGH⊥平面ABE.…(9分) (Ⅲ)在线段PC上存在一点M,使PB⊥平面EFM.证明如下: 在直角三角形AEB中,因为AE=1,AB=2,所以. 在直角梯形EADP中,因为AE=1,AD=PD=2,所以, 所以PE=BE.又因为F为PB的中点,所以EF⊥PB. 要使PB⊥平面EFM,只需使PB⊥FM. 因为PD⊥平面ABCD,所以PD⊥CB,又因为CB⊥CD,PD∩CD=D, 所以CB⊥平面PCD,而PC⊂平面PCD,所以CB⊥PC. 若PB⊥FM,则△PFM∽△PCB,可得. 由已知可求得,,,所以.…(14分)
复制答案
考点分析:
相关试题推荐
为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成[2,4),[4,6),[6,8),[8,10),[10,12]五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.
(Ⅰ)求实数a的值及参加“掷实心球”项目测试的人数;
(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;
(Ⅲ)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求函数f(A)的最大值;
(Ⅱ)若manfen5.com 满分网,求b的值.
查看答案
数列{2n-1}的前n项1,3,7,…,2n-1组成集合manfen5.com 满分网,从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn.例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.则当n=3时,S3=    ;试写出Sn=    查看答案
某公司一年购买某种货物600吨,每次都购买x吨(x为600的约数),运费为3万元/次,一年的总存储费用为2x万元.若要使一年的总运费与总存储费用之和最小,则每次需购买    吨. 查看答案
若直线l与圆x2+(y+1)2=4相交于A,B两点,且线段AB的中点坐标是(1,-2),则直线l的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.