满分5 > 高中数学试题 >

如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=...

manfen5.com 满分网如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.
(1)求证:PA⊥EF;
(2)求二面角D-FG-E的余弦值.
(1)以D为原点,建立如图所示的空间直角坐标系D-xyz,求出各顶点的坐标及直线与PA与EF的方向向量,然后代入向量数量积公式,易得两个向量的数量积为0,故PA⊥EF; (2)在(1)中所示的坐标系中,我们求也平面DFG和平面EFG的法向量,然后代入二面角的向量法夹角公式中,即可得到二面角D-FG-E的余弦值. 证明:(1)以D为原点,建立如图所示的空间直角坐标系D-xyz, 则F(0,0.1),E(0,1,1),P(0,0,2),A(2,0,0), ∴、 ∵, ∴PA⊥EF 【解析】 (2)D(0,0,0),F(0,0,1),G(1,2,0), =(1,2,-1) 设平面DFG的法向量为=(x1,y1,z1), ∵ ∴ 令y1=1,得=(-2,1,0)是平面DFG的一个法向量、 设平面EFG的法向量为=(x2,y2,z2), ∴∴ ,令z2=1,得=(1,0,1)是平面EFG的一个法向量、 ∵ 设二面角D-EG-E的平面角为θ, 则θ=<,>、 所以二面角D-FG-G的余弦值为
复制答案
考点分析:
相关试题推荐
某市出租车的起步价为6元,行驶路程不超过3km时,租车费为6元,若行驶路程超过3km,则按每超出1km(不足1km也按1km计程)收费3元计费.设出租车一天行驶的路程数ξ(按整km数计算,不足1km的自动计为1km)是一个随机变量,则其收费也是一个随机变量.已知一个司机在某个月每次出车都超过了3km,且一天的总路程数可能的取值是200、220、240、260、280、300(km),它们出现的概率依次是0.12、0.18、0.20、0.20、100a2+3a、4a.
(1)求这一个月中一天行驶路程ξ的分布列,并求ξ的数学期望和方差;
(2)求这一个月中一天所收租车费η的数学期望和方差.
查看答案
已知△ABC的周长为manfen5.com 满分网+1,且sinA+sinB=manfen5.com 满分网sinC
(I)求边AB的长;
(Ⅱ)若△ABC的面积为manfen5.com 满分网sinC,求角C的度数.
查看答案
manfen5.com 满分网如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过p点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=    cm. 查看答案
若a>0,则manfen5.com 满分网的最大值为    查看答案
直线manfen5.com 满分网(t为参数)被圆x2+y2=4截得的弦长为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.