满分5 > 高中数学试题 >

如图,已知AB⊥平面ACD,DE∥AB,AD=AC=DE=2AB=2,且F是CD...

manfen5.com 满分网如图,已知AB⊥平面ACD,DE∥AB,AD=AC=DE=2AB=2,且F是CD的中点,manfen5.com 满分网
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求此多面体的体积.
(1)取CE中点P,连接FP、BP,结合三角形中位线定理,可得AB∥FP,且AB=FP,进而得到AF∥BP,结合线面平行的判定定理,即可得到AF∥平面BCE; (2)由已知中AD=AC=DE=2AB=2,且F是CD的中点,,我们可以判断△ACD为正三角形,则AF⊥CD,又由已知可得DE⊥AF,根据线面垂直的判定定理,可得AF⊥平面CDE,进而根据面面平行的判定定理,得到平面BCE⊥平面CDE; (3)多面体是以C为顶点,以四边形ABED为底边的四棱锥,求出棱锥的高及底面面积,然后代入棱锥的体积公式,即可求出答案. 【解析】 (1)证明:取CE中点P,连接FP、BP, ∵EF∥DE,且FP=1 又AB∥DE,且AB=1, ∴AB∥FP,且AB=FP, ∴ABPF为平行四边形, ∴AF∥BP.(2分) 又∵AF⊄平面BCE,BP⊂平面BCE, ∴AF∥平面BCE(4分) (2)证明:∵AD=AC,F是CD的中点,. 所以△ACD为正三角形, ∴AF⊥CD ∵AB⊥平面ACD,DE∥AB ∴DE⊥平面ACD,又AF⊂平面ACD ∴DE⊥AF 又AF⊥CD,CD∩DE=D ∴AF⊥平面CDE(6分) 又BP∥AF, ∴BP⊥平面CDE 又∵BP平面BCE ∴平面BCE⊥平面CDE(8分) (3)此多面体是以C为顶点,以四边形ABED为底边的四棱锥, 等边三角形AD边上的高就是四棱锥的高(12分)
复制答案
考点分析:
相关试题推荐
为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人
 喜欢看该节目不喜欢看该节目合计
女生 5 
男生10  
合计  50
(Ⅰ) 请将上面的列联表补充完整;
(Ⅱ) 在犯错误的概率不超过0.005的情况下认为喜欢看该节目节目与性别是否有关?说明你的理由;
( III) 已知喜欢看该节目的10位男生中,A1、A2、A3、A4、A5还喜欢看新闻,B1、B2、B3还喜欢看动画片,C1、C2还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
P(K2≥K)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
查看答案
已知函数f(x)=sin(ωx+φ),其中ω>0,manfen5.com 满分网
(I)若manfen5.com 满分网,求φ的值;
(Ⅱ)在(I)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于manfen5.com 满分网,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位所对应的函数是偶函数.
查看答案
(几何证明选讲选做题)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,切线AP长为manfen5.com 满分网,则圆O的直径长为   
manfen5.com 满分网 查看答案
分别为ρ=4cosθ和ρ=-8sinθ的两个圆的圆心距为    查看答案
如图所示的程序框图输出的结果是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.