满分5 > 高中数学试题 >

已知抛物线C1的方程为y=ax2(a>0),圆C2的方程为x2+(y+1)2=5...

已知抛物线C1的方程为y=ax2(a>0),圆C2的方程为x2+(y+1)2=5,直线l1:y=2x+m(m<0)是C1、C2的公切线.F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点的C1的切线l交y轴于点B,设manfen5.com 满分网,证明:点M在一定直线上.

manfen5.com 满分网
(1)利用圆心到直线的距离等于半径求出m,再利用导函数与切线的关系求出a的值即可. (2)先求出以A为切点的切线l的方程以及点A,B的表达式,再求出,,利用即可求出点M所在的定直线. 【解析】 (1)由已知,圆C2:x2+(y+1)2=5的圆心为C2(0,-1),半径.(1分) 由题设圆心到直线l1:y=2x+m的距离.(3分) 即, 解得m=-6(m=4舍去).(4分) 设l1与抛物线的相切点为A(x,y),又y′=2ax,(5分) 得,.(6分) 代入直线方程得:,∴ 所以m=-6,.(7分) (2)由(1)知抛物线C1方程为,焦点.(8分) 设,由(1)知以A为切点的切线l的方程为.(10分) 令x=0,得切线l交y轴的B点坐标为(11分) 所以,,(12分) ∴(13分) 因为F是定点,所以点M在定直线上.(14分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知AB⊥平面ACD,DE∥AB,AD=AC=DE=2AB=2,且F是CD的中点,manfen5.com 满分网
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求此多面体的体积.
查看答案
为了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人
 喜欢看该节目不喜欢看该节目合计
女生 5 
男生10  
合计  50
(Ⅰ) 请将上面的列联表补充完整;
(Ⅱ) 在犯错误的概率不超过0.005的情况下认为喜欢看该节目节目与性别是否有关?说明你的理由;
( III) 已知喜欢看该节目的10位男生中,A1、A2、A3、A4、A5还喜欢看新闻,B1、B2、B3还喜欢看动画片,C1、C2还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
P(K2≥K)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
查看答案
已知函数f(x)=sin(ωx+φ),其中ω>0,manfen5.com 满分网
(I)若manfen5.com 满分网,求φ的值;
(Ⅱ)在(I)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于manfen5.com 满分网,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位所对应的函数是偶函数.
查看答案
(几何证明选讲选做题)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,切线AP长为manfen5.com 满分网,则圆O的直径长为   
manfen5.com 满分网 查看答案
分别为ρ=4cosθ和ρ=-8sinθ的两个圆的圆心距为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.