满分5 > 高中数学试题 >

设集合A={-1,0,1,2},B={x|x2-2x-3<0},则A∩B=( )...

设集合A={-1,0,1,2},B={x|x2-2x-3<0},则A∩B=( )
A.{0}
B.{0,1}
C.{-1,0}
D.{0,1,2}
通过求解一元二次不等式化简集合B,然后直接进行交集运算. 【解析】 由x2-2x-3<0,得:-1<x<3. 所以B={x|x2-2x-3<0}={x|-1<x<3}, 又A={-1,0,1,2}, 所以A∩B={-1,0,1,2}∩{x|-1<x<3}={0,1,2}. 故选D.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,若函数y=f(x)-m有三个不同的零点,求m的取值范围;
(3)设定义在D上的函数y=h(x)在点p(x,h(x))处的切线方程为l:y=g(x),当x≠x时,若manfen5.com 满分网在D内恒成立,则称P为函数y=h(x)的“类对称点”,请你探究当a=4时,函数y=f(x)是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.
查看答案
已知圆manfen5.com 满分网,定点manfen5.com 满分网,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足manfen5.com 满分网
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设manfen5.com 满分网,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
查看答案
在数列{an}中,a1=1、manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ) 求a3、a4,猜想an的表达式,并加以证明;
(Ⅱ) 设manfen5.com 满分网,求证:对任意的自然数n∈N*,都有manfen5.com 满分网
查看答案
某学校某班文娱小组的每位组员唱歌、跳舞至少会一项,已知已知会唱歌的有2人,会跳舞听有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且P(ξ>0)=manfen5.com 满分网
(1)请你判断该班文娱小组的人数并说明理由;
(2)求ξ的分布列与数学期望.
查看答案
如图,已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,
(1)证明:平面AB1D1⊥平面AA1C1
(2)当二面角B1-AC1-D1的平面角为120°时,求四棱锥A-A1B1C1D1的体积.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.