根据题目给出的导函数的图象,得到导函数在给定定义域内不同区间上的符号,由此判断出原函数在各个区间上的单调性,从而判断出函数取得极大值的情况.
【解析】
如图,不妨设导函数的零点分别为x1,x2,x3,x4.
由导函数的图象可知:
当x∈(a,x1)时,f′(x)>0,f(x)为增函数,
当x∈(x1,x2)时,f′(x)<0,f(x)为减函数,
当x∈(x2,x3)时,f′(x)>0,f(x)为增函数,
当x∈(x3,x4)时,f′(x)>0,f(x)为增函数,
当x∈(x4,b)时,f′(x)<0,f(x)为减函数,
由此可知,函数f(x)在开区间(a,b)内有两个极大值点,
分别是当x=x1时和x=x4时函数取得极大值.
故选B.