满分5 > 高中数学试题 >

已知函数f(x)=|x-a|. (1)若不等式f(x)≤3的解集为{x|-1≤x...

已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
(1)不等式f(x)≤3就是|x-a|≤3,求出它的解集,与{x|-1≤x≤5}相同,求实数a的值; (2)在(1)的条件下,f(x)+f(x+5)≥m对一切实数x恒成立,根据f(x)+f(x+5)的最小值≥m,可求实数m的取值范围. 【解析】 (1)由f(x)≤3得|x-a|≤3, 解得a-3≤x≤a+3. 又已知不等式f(x)≤3的解集为{x|-1≤x≤5}, 所以解得a=2.(6分) (2)当a=2时,f(x)=|x-2|. 设g(x)=f(x)+f(x+5), 于是 所以当x<-3时,g(x)>5; 当-3≤x≤2时,g(x)=5; 当x>2时,g(x)>5. 综上可得,g(x)的最小值为5. 从而,若f(x)+f(x+5)≥m 即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].(12分)
复制答案
考点分析:
相关试题推荐
已知直线C1manfen5.com 满分网(t为参数),C2manfen5.com 满分网(θ为参数),
(Ⅰ)当α=manfen5.com 满分网时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
查看答案
manfen5.com 满分网如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.
(1)求证:AG•EF=CE•GD;
(2)求证:manfen5.com 满分网
查看答案
已知函数f(x)=lnx与g(x)=kx+b(k,b∈R)的图象交于P,Q两点,曲线y=f(x)在P,Q两点处的切线交于点A.
(Ⅰ)当k=e,b=-3时,求f(x)-g(x)的最大值;(e为自然常数)
(Ⅱ)若A(manfen5.com 满分网manfen5.com 满分网),求实数k,b的值.
查看答案
已知椭圆C:manfen5.com 满分网的右焦点为F,左顶点为A,点P为曲线D上的动点,以PF为直径的圆恒与y轴相切.
(Ⅰ)求曲线D的方程;
(Ⅱ)设O为坐标原点,是否存在同时满足下列两个条件的△APM?①点M在椭圆C上;②点O为APM的重心.若存在,求出点P的坐标;若不存在,说明理由.(若三角形ABC的三点坐标为A(x1,y1),B(x2,y2),C(x3,y3),则其重心G的坐标为(manfen5.com 满分网manfen5.com 满分网))
查看答案
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,manfen5.com 满分网manfen5.com 满分网.(λ∈R)
(Ⅰ)当λ=manfen5.com 满分网时,求证AB1⊥平面A1BD;
(Ⅱ)当二面角A-A1D-B的大小为manfen5.com 满分网时,求实数λ的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.