满分5 > 高中数学试题 >

已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减...

已知函数f(x)=x,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(I)求λ的最大值;
(II)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围;
(Ⅲ)讨论关于x的方程manfen5.com 满分网的根的个数.
(I)由题意由于f(x)=x,所以函数g(x)=λf(x)+sinx=λx+sinx,又因为该函数在区间[-1,1]上的减函数,所以可以得到λ的范围; (II)由于g(x)<t2+λt+1在x∈[-1,1]上恒成立⇔[g(x)]max=g(-1)=-λ-sinl,解出即可; (III)利用方程与函数的关系可以构造成两函数图形的交点个数加以分析求解. 【解析】 (I)∵f(x)=x, ∴g(x)=λx+sinx, ∵g(x)在[-1,1]上单调递减, ∴g'(x)=λ+cosx≤0 ∴λ≤-cosx在[-1,1]上恒成立,λ≤-1,故λ的最大值为-1. (II)由题意[g(x)]max=g(-1)=-λ-sinl ∴只需-λ-sinl<t2+λt+1 ∴(t+1)λ+t2+sin+1>0(其中λ≤-1),恒成立, 令h(λ)=(t+1)λ+t2+sin1+1>0(λ≤-1), 则, ∴,而t2-t+sin1>0恒成立, ∴t<-1 又t=-1时-λ-sinl<t2+λt+1 故t≤-1(9分) (Ⅲ)由-2ex+m. 令f1(x)=-2ex+m, ∵f1′(x)=, 当x∈(0,e)时,f1′(x)≥0, ∴f1(x)在(0,e]上为增函数; 当x∈[e,+∞)时,f1′(x)≤0, ∴f1(x)在[e,+∞)为减函数; 当x=e时,[f1(x)]max=f1(e)=, 而f2(x)=(x-e)2+m-e2, ∴当m-e2>,即m>时,方程无解; 当m-e2=,即m=时,方程有一个根; 当m-e2<时,m<时,方程有两个根.(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,椭圆短轴的一个端点与两个焦点构成的三角形的面积为manfen5.com 满分网
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为manfen5.com 满分网,求斜率k的值;
②已知点manfen5.com 满分网,求证:manfen5.com 满分网为定值.
查看答案
已知manfen5.com 满分网,点manfen5.com 满分网在曲线y=f(x)上(n∈N*)且a1=1,an>0.
(Ⅰ)求证:数列manfen5.com 满分网为等差数列,并求数列{an}的通项公式;
(Ⅱ)设数列manfen5.com 满分网的前n项和为Sn,若对于任意的n∈N*,存在正整数t,使得manfen5.com 满分网恒成立,求最小正整数t的值.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥面ABCD,点M、N分别为BC、PA的中点,且PA=AB=2.
(1)证明:BC⊥面AMN;
(2)在线段PD上是否存在一点E,使得NM∥面ACE;若存在,求出PE的长,若不存在,说明理由.

manfen5.com 满分网 查看答案
甲乙二人有4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)写出甲乙抽到牌的所有情况.
(2)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?
(3)甲乙约定,若甲抽到的牌的数字比乙大,则甲胜;否则乙胜,你认为此游戏是否公平?为什么?
查看答案
已知manfen5.com 满分网=(1,sinx-1),manfen5.com 满分网=(sinx+sinxcosx,sinx),函数f(x)=manfen5.com 满分网manfen5.com 满分网(x∈R).
(1)求f(x)的最小正周期;
(2)求函数y=f(x)在x∈[-manfen5.com 满分网,0]的最大值与最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.