满分5 > 高中数学试题 >

命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的( ) A...

命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
命题“∃x∈R,使x2+ax-4a<0为假命题”,等价于命题“∀x∈R,使x2+ax-4a≥0为真命题”,故△=a2+16a≤0,由此得到-16≤a≤0;由-16≤a≤0,知△=a2+16a≤0,故命题“∀x∈R,使x2+ax-4a≥0为真命题”,所以命题“∃x∈R,使x2+ax-4a<0为假命题”.由此得到命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的充要条件. 【解析】 ∵命题“∃x∈R,使x2+ax-4a<0为假命题”, ∴命题“∀x∈R,使x2+ax-4a≥0为真命题”, ∴△=a2+16a≤0, ∴-16≤a≤0, 即命题“∃x∈R,使x2+ax-4a<0为假命题”⇒“-16≤a≤0”; ∵-16≤a≤0, ∴△=a2+16a≤0, ∴命题“∀x∈R,使x2+ax-4a≥0为真命题”, ∴命题“∃x∈R,使x2+ax-4a<0为假命题”, 即命题“∃x∈R,使x2+ax-4a<0为假命题”⇒“-16≤a≤0”. 故命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的充要条件. 故选C.
复制答案
考点分析:
相关试题推荐
复数z满足manfen5.com 满分网,则manfen5.com 满分网=( )
A.1+3i
B.3-i
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
manfen5.com 满分网(a>b>0)如图,已知椭圆C:的左、右焦点分别为F1、F2,离心率为manfen5.com 满分网,点A是椭圆上任一点,△AF1F2的周长为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(-4,0)任作一动直线l交椭圆C于M,N两点,记manfen5.com 满分网,若在线段MN上取一点R,使得manfen5.com 满分网,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.

manfen5.com 满分网 查看答案
设函数f(x)=lnx-ax.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若a=manfen5.com 满分网,g(x)=x(f(x)+1),(x>1)且g(x)在区间(k,k+1)内存在极值,求整数k的值.
查看答案
某高校组织的自主招生考试,共有1000名同学参加笔试,成绩均介于60分到100分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分为4组:第1组[60,70),第2组[70,80),第3组[80,90),第4组[90,100].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在85分(含85分)以上的同学有面试资格.
(Ⅰ)估计所有参加笔试的1000名同学中,有面试资格的人数;
(Ⅱ)已知某中学有甲、乙两位同学取得面试资格,且甲的笔试比乙的高;面试时,要求每人回答两个问题,假设甲、乙两人对每一个问题答对的概率均为manfen5.com 满分网;若甲答对题的个数不少于乙,则甲比乙优先获得高考加分资格.求甲比乙优先获得高考加分资格的概率.

manfen5.com 满分网 查看答案
如图,AD⊥平面ABC,AD∥CE,AC=AD=AB=1,∠BAC=90°,凸多面体ABCED的体积为manfen5.com 满分网,F为BC的中点.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面BCE.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.