如图已知四边形ABCD内接于⊙O,DA与CB的延长线交于点E,且EF∥CD,AB的延长线与EF相交于点F,FG切⊙O于点G.
求证:EF=FG.
考点分析:
相关试题推荐
给定椭圆
>b>0),称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程.
(2)点P是椭圆C的“准圆”上的一个动点,过点P作直线l
1,l
2,使得l
1,l
2与椭圆C都只有一个交点.求证:l
1⊥l
2.
查看答案
已知函数f(x)=ax
2-x(a∈R,a≠0),g(x)=lnx
(1)判断函数f(x)-g(x)在定义域上的单调性;
(2)若函数y=f(x)与y=g(x)的图象有两个不同的交点M,N,求a的取值范围.
查看答案
如图,直棱柱ABCD-A
1B
1C
1D
1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°AB=2AD=2CD=2.
(1)求证:AC⊥平面BB
1C
1C;
(2)在A
1B
1上是否存一点P,使得DP与平面BCB
1与平面ACB
1都平行?证明你的结论.
查看答案
甲乙两位学生参加数学竞赛培训,在培训期间,他们参加了5次预赛成绩记录如下:
甲 82 82 79 95 87
乙 95 75 80 90 85
(1)用茎叶图表示这两组数据;
(2)从甲乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率:
(3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
查看答案
已知函数f(x)=-x
3+mx在(0,1)上是增函数
(1)求实数m的取值集合A.
(2)当m取值集合A.中的最小值时,定义数列{a
n};满足a
1=3,且a
n>0,
,求数列{a
n}的通项公式
(3)若b
n=na
n,数列{b
n}的前n项和为S
n,求证:S
n.
查看答案