满分5 > 高中数学试题 >

已知椭圆的中心在原点,焦点在x轴上,一个顶点为B(0,-1),且其右焦点到直线的...

已知椭圆的中心在原点,焦点在x轴上,一个顶点为B(0,-1),且其右焦点到直线manfen5.com 满分网的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为k(k≠0),且过定点manfen5.com 满分网的直线l,使l与椭圆交于两个不同的点M、N,且|BM|=|BN|?若存在,求出直线l的方程;若不存在,请说明理由.
(1)设椭圆的方程为,由已知得b=1.设右焦点为(c,0),由题意得,由此能求出椭圆的方程. (2)直线l的方程y=kx+,代入椭圆方程,得(1+3k2)x2+9kx+=0.由△=81k2-15(1+3k2)>0得,设点M(x1,y1),N(x2,y2),则,设M、N的中点为P,则点P的坐标为.由此入手能够导出直线l的方程. 【解析】 (1)设椭圆的方程为,由已知得b=1. 设右焦点为(c,0),由题意得,∴, ∴a2=b2+c2=3. ∴椭圆的方程为. (2)直线l的方程y=kx+,代入椭圆方程,得 (1+3k2)x2+9kx+=0. 由△=81k2-15(1+3k2)>0得, 设点M(x1,y1),N(x2,y2), 则, 设M、N的中点为P,则点P的坐标为. ∵|BM|=|BN|,∴点B在线段MN的中垂线上. ,化简,得. ∵,∴, 所以,存在直线l满足题意,直线l的方程为 或.
复制答案
考点分析:
相关试题推荐
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Snmanfen5.com 满分网和an的等差中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明manfen5.com 满分网
查看答案
如图,正方体ABCD-A1B1C1D1中,E为棱C1D1上的动点,F为棱BC的中点.
(1)求证:直线AE⊥DA1
(2)求直线DF与平面A1B1CD所成角的正弦值
(3)若E为C1D1的中点,在线段AA1求一点G,使得直线AE⊥平面DFG.

manfen5.com 满分网 查看答案
某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f(n)表示前n年的纯利润总和(f(n)=前n年的总收入-前n年的总支出-投资额).
(1)该厂从第几年开始盈利?
(2)若干年后,投资商为开发新项目,对该厂有两种处理方法:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?
查看答案
已知△ABC的三个内角A,B,C所对的边分别为a,b,c.manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求A的大小;
(Ⅱ)若a=1,manfen5.com 满分网.求S△ABC
查看答案
已知函数f(x)满足manfen5.com 满分网,且f(x)是偶函数,当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.