满分5 > 高中数学试题 >

已知函数f(x)=aln(1+ex)-(a+1)x,(其中a>0),点A(x1,...

已知函数f(x)=aln(1+ex)-(a+1)x,(其中a>0),点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3
(Ⅰ)证明:函数f(x)在(-∞,+∞)上是减函数;
(Ⅱ)求证:△ABC是钝角三角形;
(Ⅲ)试问△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由.
(Ⅰ)∵f(x)=aln(1+ex)-(a+1)x,欲证函数f(x)在(-∞,+∞)上是单调减函数,只须证明其导数f′(x)<0即可; (Ⅱ)先设A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))且x1<x2<x3,欲证:△ABC是钝角三角形,只须证明其中一个内角为钝角即可,结合向量的坐标运算,只须证明:即得; (Ⅲ)假设△ABC为等腰三角形,则只能是,再利用平面内两点的距离公式将点的坐标代入计算,如出现矛盾,则△ABC不可能为等腰三角形,如不矛盾,则△ABC能是等腰三角形. 【解析】 (Ⅰ)∵f(x)=aln(1+ex)-(a+1)x,∴恒成立, 所以函数f(x)在(-∞,+∞)上是单调减函数.(3分) (Ⅱ)证明:据题意A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))且x1<x2<x3, 由(Ⅰ)知f(x1)>f(x2)>f(x3),x2=(4分) 可得A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))三点不共线 (反证法:否则,得x1=x3) ∴ ∴(6分) ∵x1-x2<0,x3-x2>0,f(x1)-f(x2)>0,f(x3)-f(x2)<0,∴,∴ 即△ABC是钝角三角形(8分) (Ⅲ)假设△ABC为等腰三角形,则只能是 即:(x1-x2)2+[f(x1)-f(x2)]2=(x3-x2)2+[f(x3)-f(x2)]2∵x2-x1=x3-x2∴[f(x1)-f(x2)]2=[f(x3)-f(x2)]2 即2f(x2)=f(x1)+f(x3)①(11分) 而事实上,② 由于,故(2)式等号不成立.这与(1)式矛盾. 所以△ABC不可能为等腰三角形.(13分)
复制答案
考点分析:
相关试题推荐
已知数列{an}中,manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求证:k=1;
(Ⅱ)设manfen5.com 满分网,f(x)是数列{g(x)}的前n项和,求f(x)的解析式;
(Ⅲ)求证:不等式manfen5.com 满分网对n∈N+恒成立.
查看答案
在平面直角坐标系xoy中,设点F(1,0),直线l:x=-1,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.
(1)求动点Q的轨迹的方程;
(2)记Q的轨迹的方程为E,过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求证:直线MN必过定点R(3,0).
查看答案
manfen5.com 满分网如图,在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知manfen5.com 满分网
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(Ⅲ)在(Ⅱ)的条件下,AB=manfen5.com 满分网,求二面角A-EB1-A1的平面角的正切值.
查看答案
已知f(x)=manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)当manfen5.com 满分网,求函数f(x)的零点.
查看答案
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分(同一组中的数据用该组区间的中点值作代表);
(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求这两名学生的成绩均不低于80分的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.