满分5 > 高中数学试题 >

设A(x1,y1),B(x2,y2)是椭圆上的两点,已知向量=(,),=(,),...

设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),若manfen5.com 满分网=0且椭圆的离心率e=manfen5.com 满分网,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(1)依题意可求得b,进而根据离心率求得a,则椭圆方程可得. (2)先看当直线AB斜率不存在时,即x1=x2,y1=y2,根据=0代入求得x12-=0把点A代入椭圆方程,求得A点横坐标和纵坐标的绝对值,进而求得△AOB的面积的值;当直线AB斜率存在时:设AB的方程为y=kx+b与椭圆方程联立消去y,根据伟大定理求得x1+x2和x1x2的表达式代入=0中整理可求得2b2-k2=4代入三角形面积公式中求得求得△AOB的面积的值为定值.最后综合可得答案. 【解析】 (1)依题意知2b=2,∴b=1,e=== ∴a=2,c== ∴椭圆的方程为 (2)①当直线AB斜率不存在时,即x1=x2,y1=y2, ∵=0 ∴x12-=0 ∴y12=4x12 又A(x1,y1)在椭圆上,所以x12+=1 ∴|x1|=,|y1|= s=|x1||y1-y2|=1 所以三角形的面积为定值. ②当直线AB斜率存在时:设AB的方程为y=kx+b 消去y得(k2+4)x2+2kbx+b2-4=0 ∴x1+x2=,x1x2=,△=(2kb)2-4(k2+4)(b2-4)>0 而=0, ∴x1x2+=0 即x1x2+=0代入整理得 2b2-k2=4 S=|AB|=|b|= ===1 综上三角形的面积为定值1.
复制答案
考点分析:
相关试题推荐
从参加某次高三数学摸底考试的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(1)补全这个频率分布直方图,并估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求x的分布列和数学期望.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
查看答案
已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i的值;
(2)设manfen5.com 满分网,是否存在一个最小的常数m使得b1+b2+…+bn<m对于任意的正整数n均成立,若存在,求出常数m;若不存在,请说明理由.
查看答案
已知平面向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,其中0<φ<π,且函数manfen5.com 满分网的图象过点manfen5.com 满分网
(1)求φ的值;
(2)先将函数y=f(x)的图象向左平移manfen5.com 满分网个单位,然后将得到函数图象上各点的横坐标变为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
给出下列命题:
①函数y=manfen5.com 满分网在区间[1,3]上是增函数;
②函数f(x)=2x-x2的零点有3个;
③函数y=sin x(x∈[-π,π])图象与x轴围成的图形的面积是S=manfen5.com 满分网
④若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.
其中真命题的序号是(请将所有正确命题的序号都填上):    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.