满分5 > 高中数学试题 >

已知函数f(x)=axlnx图象上点(e,f(e))处的切线方程与直线y=2x平...

已知函数f(x)=axlnx图象上点(e,f(e))处的切线方程与直线y=2x平行(其中e=2.71828…),g(x)=x2-tx-2.
(I)求函数f(x)的解析式;
(II)求函数f(x)在[n,n+2](n>0)上的最小值;
(III)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.
(I)根据切线方程与直线y=2x平行得到切线的斜率为2,即可得到f'(e)=2,求出函数的导函数把f'(e)=2代入即可求出a的值得到函数的解析式; (II)令f′(x)=0求出x的值为,由函数定义域x∈(0,+∞),所以在(0,)和(,+∞)上讨论函数的增减性,分两种情况:当属于[n,n+2]得到函数的最小值为f();当≤n≤n+2时,根据函数为单调增得到函数的最小值为f(n),求出值即可; (III)把g(x)的解析式代入不等式3f(x)≥g(x)中解出,然后令h(x)=,求出h′(x)=0时x的值,然后在定义域(0,+∞)上分区间讨论函数的增减性,求出h(x)的最大值,t要大于等于h(x)的最大值即为不等数恒成立,即可求出t的取值范围. 【解析】 (I)由点(e,f(e))处的切线方程与直线2x-y=0平行, 得该切线斜率为2,即f'(e)=2. 又∵f'(x)=a(lnx+1),令a(lne+1)=2,a=1, 所以f(x)=xlnx. (II)由(I)知f'(x)=lnx+1, 显然f'(x)=0时x=e-1当时f'(x)<0, 所以函数上单调递减. 当时f'(x)>0, 所以函数f(x)在上单调递增, ①时,; ②时,函数f(x)在[n,n+2]上单调递增, 因此f(x)min=f(n)=nlnn; 所以; (III)对一切x∈(0,e],3f(x)≥g(x)恒成立, 又g(x)=x2-tx-2, ∴3xlnx≥x2-tx-2, 即. 设, 则, 由h'(x)=0得x=1或x=2, ∴x∈(0,1),h'(x)>0,h(x)单调递增, x∈(1,2),h'(x)>0,h(x)单调递减, x∈(2,e),h'(x)>0,h(x)单调递增, ∴h(x)极大值=h(1)=-1,且h(e)=e-3-2e-1<-1, 所以h(x)max=h(1)=-1. 因为对一切x∈(0,e],3f(x)≥g(x)恒成立, ∴t≥h(x)max=-1. 故实数t的取值范围为[-1,+∞).
复制答案
考点分析:
相关试题推荐
设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),若manfen5.com 满分网=0且椭圆的离心率e=manfen5.com 满分网,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案
从参加某次高三数学摸底考试的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(1)补全这个频率分布直方图,并估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求x的分布列和数学期望.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
查看答案
已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i的值;
(2)设manfen5.com 满分网,是否存在一个最小的常数m使得b1+b2+…+bn<m对于任意的正整数n均成立,若存在,求出常数m;若不存在,请说明理由.
查看答案
已知平面向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,其中0<φ<π,且函数manfen5.com 满分网的图象过点manfen5.com 满分网
(1)求φ的值;
(2)先将函数y=f(x)的图象向左平移manfen5.com 满分网个单位,然后将得到函数图象上各点的横坐标变为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.