满分5 > 高中数学试题 >

已知= .

已知manfen5.com 满分网=   
由cotα=-2,可求得cosα=-2sinα,利用cos2α+sin2α=1,α∈(,2π),即可求得答案. 【解析】 ∵cotα=-2, ∴cosα=-2sinα, ∴cos2α+sin2α=5sin2α=1,又α∈(,2π), ∴sinα=-. 故答案为:-.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网=(2,m),若向量manfen5.com 满分网,若manfen5.com 满分网manfen5.com 满分网垂直,则m等于    查看答案
已知函数f(x)=axlnx图象上点(e,f(e))处的切线方程与直线y=2x平行(其中e=2.71828…),g(x)=x2-tx-2.
(I)求函数f(x)的解析式;
(II)求函数f(x)在[n,n+2](n>0)上的最小值;
(III)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.
查看答案
设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),若manfen5.com 满分网=0且椭圆的离心率e=manfen5.com 满分网,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案
从参加某次高三数学摸底考试的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(1)补全这个频率分布直方图,并估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求x的分布列和数学期望.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.