如图所示,直角梯形ABCD中,∠A=∠D=90°,AD=2,AB=3,CD=4,P在线段AB上,BP=1,O在CD上,且OP∥AD,将图甲沿OP折叠使得平面OCBP⊥底面ADOP,得到一个多面体(如图乙),M、N分别是AC、OP的中点.
(1)求证:MN⊥平面ACD;
(2)求平面ABC与底面OPAD所成角(锐角)的余弦值.
考点分析:
相关试题推荐
永州市举办科技创新大赛,某县有20件科技创新作品参赛,大赛组委会对这20件作品分别从“创新性”和“实用性”两个方面进行评分,每个方面评分均按等级采用3分制(最低1分,最高3分),若设“创新性”得分为x,“实用性”得分为y,得到统计结果如下表,若从这20件产品中随机抽取1件.
x 作品数 y | 创 新 性 |
1分 | 2分 | 3分 |
实 用 性 | 1分 | 2 | | 2 |
2分 | 1 | 4 | 1 |
3分 | 2 | 2 | 6 |
(1)求事件A:“x≥2且y≤2”的概率;
(2)设ξ为抽中作品的两项得分之和,求ξ的数学期望.
查看答案
设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=3,b=4,
.
(1)求△ABC的面积;
(2)求sin(B-C)的值.
查看答案
电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面至多埋一个雷,如果无雷掀开方块下面就标有数字,提醒游戏者此数字周围的方块(至多八个)中雷的个数(0常省略不标),如图甲中的“3”表示它的周围八个方块中有且仅有3个埋有雷.图乙是张三玩游戏中的局部,图中有4个方块已确定是雷(方块上标有旗子),则上方左起八个方块中(方块正上方对应标有字母),能够确定一定不是雷的有
,一定是雷的有
.(请填入方块上方对应字母)
查看答案
执行如图所示的程序框图,则输出的复数z是
.
查看答案
双曲线C:
的左、右焦点分别为F
1、F
2,P是C右支上一动点,点Q的坐标是(1,4),则|PF
1|+|PQ|的最小值为
.
查看答案