满分5 > 高中数学试题 >

已知函数. (1)若函数f(x)在其定义域内为单调函数,求a的取值范围; (2)...

已知函数manfen5.com 满分网
(1)若函数f(x)在其定义域内为单调函数,求a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且manfen5.com 满分网,已知a1=4,求证:an≥2n+2;
(3)在(2)的条件下,试比较manfen5.com 满分网manfen5.com 满分网的大小,并说明你的理由.
(1)根据函数单调性与导数的关系,f(x)在其定义域内为单调函数,在(0,+∞)内f′(x)恒大于0或恒小于0,转化为恒成立问题去解决. (2)根据导数的几何意义,f'(1)=0,求出a,确定f(x),f′(x)继而得出an+1的表达式,最后用数学归纳法证明. (3)在(2)的条件下,将各项适当放缩,能得出,再结合等比数列求和公式化简不等式左边,去与比较. 【解析】 (1)f(1)=a-b=0⇒a=b, ∴, ∴. 要使函数f(x)在定义域(0,+∞)内为单调函数,则在(0,+∞)内f′(x)恒大于0或恒小于0, 当在(0,+∞)内恒成立; 当a>0时,要使恒成立,则,解得a>1, 当a<0时,要使恒成立,则,解得a<-1, 所以a的取值范围为a>1或a<-1或a=0. (2)根据题意得:f'(1)=0,即a+a-2=0,得a=1,∴, 于是, 用数学归纳法证明如下: 当n=1时,a1=4≥2×1+2,不等式成立; 假设当n=k时,不等式ak≥2k+2成立,即ak-2k≥2也成立, 当n=k+1时,ak+1=ak(ak-2k)+1≥(2k+2)×2+1=4k+5>2(k+1)+2, 所以当n=k+1,不等式也成立, 综上得对所有n∈N*时5,都有an≥2n+2. (3)由(2)得an=an-1(an-1-2n+2)+1≥an-1[2(n-1)+2-2n+2]+1=2an-1+1, 于是an+1≥2(an-1+1)(n≥2), 所以a2+1≥2(a1+1),a3+1≥2(a2+1)…an+1≥2(an-1+1), 累乘得:, 所以.
复制答案
考点分析:
相关试题推荐
在直角坐标平面内,y轴右侧的一动点P到点(manfen5.com 满分网,0)的距离比它到y轴的距离大manfen5.com 满分网
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)设Q为曲线C上的一个动点,点B,C在y轴上,若△QBC为圆(x-1)2+y2=1的外切三角形,求△QBC面积的最小值.
查看答案
manfen5.com 满分网长沙市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域近似地为半径是R的圆面.该圆面的内接四边形ABCD是原棚户建筑用地,测量可知边界AB=AD=4万米,BC=6万米,CD=2万米.
(1)请计算原棚户区建筑用地ABCD的面积及圆面的半径R的值;
(2)因地理条件的限制,边界AD、DC不能变更,而边界AB、BC可以调整,为了提高棚户区改造建筑用地的利用率,请在圆弧ABC上设计一点P;使得棚户区改造的新建筑用地APCD的面积最大,并求最大值.
查看答案
manfen5.com 满分网如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=manfen5.com 满分网
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)求异面直线AB与CD所成角的余弦;
(Ⅲ)求点E到平面ACD的距离.
查看答案
某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示.
组号分组频数频率
第一组[160,165)50.05
第二组[165,170)350.35
第三组[170,175)30a
第四组[175,180)b0.2
第五组[180,185)100.1
(Ⅰ)求a,b的值;
(Ⅱ)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;考生李翔的笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(Ⅲ)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为ξ,求ξ的分布列和数学期望.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=manfen5.com 满分网,f(C)=0,若向量manfen5.com 满分网与向量manfen5.com 满分网共线,求a,b.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.