已知α、β∈(0,
),且
,
.
求证:对于x>0,有f(x)<2.
考点分析:
相关试题推荐
有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c,…,z的26个字母(不分大小写),依次对应1,2,3,…,26这26个自然数,见如下表格:
a | b | c | d | e | f | g | h | i | j | k | l | m |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
n | o | p | q | r | s | t | u | v | w | x | y | z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
给出如下变换公式:
X′=
将明文转换成密文,如8→
+13=17,即h变成q;如5→
=3,即e变成c.
①按上述规定,将明文good译成的密文是什么?
②按上述规定,若将某明文译成的密文是shxc,那么原来的明文是什么?
查看答案
一个数列{1,2,2,3,3,3,4,4,4,4,5,…},它的首项是1,随后两项都是2,接下来3项都是3,再接下来4项都是4,…,依此类推,若a
n-1=20,a
n=21,则n=
.
查看答案
如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依此类推,则第63行从左至右的第5个数应是
.
查看答案
若n是正整数,定义n!=n×(n-1)×(n-2)×…3×2×1,如3!=3×2×1=6,设m=1!+2!+3!+4!+…+2011!+2012!,则m这个数的个位数字为
.
查看答案