满分5 > 高中数学试题 >

如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上...

manfen5.com 满分网如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(Ⅰ)求证:AC是△BDE的外接圆的切线;
(Ⅱ)若manfen5.com 满分网,求EC的长.
(Ⅰ)要证明AC是△BDE的外接圆的切线,故考虑取BD的中点O,只要证明OE⊥AC,结合∠C=90°,证明BC∥OE即可 (Ⅱ)设⊙O的半径为r,则在△AOE中,由OA2=OE2+AE2,可求r,代入可得OA,2OE,Rt△AOE中,可求∠A,∠AOE,进而可求∠CBE=∠OBE,在BCE中,通过EC与BE的关系可求 证明:(Ⅰ)取BD的中点O,连接OE. ∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO, ∴∠CBE=∠BEO,∴BC∥OE.…(3分) ∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圆的切线.    …(5分) (Ⅱ)设⊙O的半径为r,则在△AOE中,OA2=OE2+AE2,即, 解得,…(7分) ∴OA=2OE, ∴∠A=30°,∠AOE=60°. ∴∠CBE=∠OBE=30°. ∴在Rt△BCE中,可得EC=.                 …(10分)
复制答案
考点分析:
相关试题推荐
设f(x)=ex(ax2+x+1).
(I)若a>0,讨论f(x)的单调性;
(Ⅱ)x=1时,f(x)有极值,证明:当θ∈[0,manfen5.com 满分网]时,|f(cosθ)-f(sinθ)|<2.
查看答案
如图,在直角坐标系xOy中,点P(1,manfen5.com 满分网)到抛物线C:y2=2px(P>0)的准线的距离为manfen5.com 满分网.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.
(1)求p,t的值.
(2)求△ABP面积的最大值.

manfen5.com 满分网 查看答案
从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,事件E={|x-y|≤5},事件F={|x-y|>15},求P(E∪F).

manfen5.com 满分网 查看答案
如图,在正三棱柱ABC-A1B1C1 中,AB=2,AA1=1,D是BC的中点,点P在平面BCC1B1内,PB1=PC1=manfen5.com 满分网
(Ⅰ)求证:PA1⊥BC;
(Ⅱ)求证:PB1∥平面AC1D;
(Ⅲ)求VA1-ADC1

manfen5.com 满分网 查看答案
数列{an}的前n项和记为Sn,a1=t,an+1=2Sn+1(n∈N*).
(1)当t为何值时,数列{an}为等比数列?
(2)在(1)的条件下,若等差数列{bn}的前n项和Tn有最大值,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.