满分5 > 高中数学试题 >

如图,已知AB是⊙O的直径,AC是弦,AD⊥CE,垂足为D,AC平分∠BAD. ...

manfen5.com 满分网如图,已知AB是⊙O的直径,AC是弦,AD⊥CE,垂足为D,AC平分∠BAD.
(Ⅰ)求证:直线CE是⊙O的切线;
(Ⅱ)求证:AC2=AB•AD.
(I)连接OC,利用△OAC为等腰三角形,结合同角的余角相等,我们易结合AD⊥CE,得到OC⊥DE,根据切线的判定定理,我们易得到结论; (II)连接BC,我们易证明△ABC∽△ACD,然后相似三角形性质,相似三角形对应边成比例,易得到结论. 证明:(Ⅰ)连接OC,如下图所示: 因为OA=OC, 所以∠OCA=∠OAC.(2分) 又因为AD⊥CE, 所以∠ACD+∠CAD=90°, 又因为AC平分∠BAD, 所以∠OCA=∠CAD,(4分) 所以∠OCA+∠CAD=90°, 即OC⊥CE, 所以CE是⊙O的切线.(6分) (Ⅱ)连接BC, 因为AB是⊙O的直径, 所以∠BCA=∠ADC=90°, 因为CE是⊙O的切线, 所以∠B=∠ACD,(8分) 所以△ABC∽△ACD, 所以, 即AC2=AB•AD.(10分)
复制答案
考点分析:
相关试题推荐
设函数f(x)=xlnx(x>0).
(1)求函数f(x)的最小值;
(2)设F(x)=ax2+f′(x)(a∈R),讨论函数F(x)的单调性;
(3)斜率为k的直线与曲线y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:manfen5.com 满分网
查看答案
已知抛物线的顶点在坐标原点,焦点为F(1,0),点P是点F关于y轴的对称点,过点P的直线交抛物线于A,B两点.
(1)试问在x轴上是否存在不同于点P的一点T,使得TA,TB与x轴所在的直线所成的锐角相等,若存在,求出定点T的坐标,若不存在说明理由.
(2)若△AOB的面积为manfen5.com 满分网,求向量manfen5.com 满分网的夹角.
查看答案
如图,在四棱锥P-ABCD中,顶点P在底面ABCD内的射影恰好落在AB的中点O上,又∠BAD=90°,BC∥AD,且BC:AB:AD=1:2:2.
(1)求证:PD⊥AC;
(2)若PO=BC,求直线PD与AB所成的角;
(3)若平面APB与平面PCD所成的角为60°,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
衡阳市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的2×2列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为manfen5.com 满分网
优秀非优秀合计
甲班10
乙班30
合计110
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式与临界值表:manfen5.com 满分网
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案
在△ABC中,已知acosB+bcosA=b,
(1)求证C=B;
(2)若∠ABC的平分线交AC于D,且sinmanfen5.com 满分网=manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.