已知数列{a
n}为各项均为正的等比数列,其公比为q.
(1)当q=
时,在数列{a
n}中:
①最多有几项在1~100之间?
②最多有几项是1~100之间的整数?
(2)当q>1时,在数列{a
n}中,最多有几项是100~1000之间的整数?(参考数据:lg3=0.477,lg2=0.301).
考点分析:
相关试题推荐
设f(x)是定义在[-1,1]上的奇函数,函数g(x)与f(x)的图象关于y轴对称,且当x∈(0,1)时,g(x)=1nx-ax
2.
(1)求函数f(x)的解析式;
(2)若对于区间(0,1)上任意的x,都有|f(x)|≥1成立,求实数a的取值范围.
查看答案
如图,已知椭圆
的左、右顶点分别为A、B,右焦点为F,直线l为椭圆的右准线,N为l上一动点,且在x轴上方,直线AN与椭圆交于点M.
(1)若AM=MN,求∠AMB的余弦值;
(2)设过A,F,N三点的圆与y轴交于P,Q两点,当线段PQ的中点坐标为(0,9)时,求这个圆的方程.
查看答案
如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC,该曲线段是函数
(A>0,ω>0),x∈[-4,0]时的图象,且图象的最高点为B(-1,2).赛道的中间部分为长
千米的直线跑道CD,且CD∥EF.赛道的后一部分是以O为圆心的一段圆弧
.
(1)求ω的值和∠DOE的大小;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧
上,且∠POE=θ,求当“矩形草坪”的面积取最大值时θ的值.
查看答案
如图,已知▱ABCD,直线BC⊥平面ABE,F为CE的中点.
(1)求证:直线AE∥平面BDF;
(2)若∠AEB=90°,求证:平面BDF⊥平面BCE.
查看答案
已知向量a,b满足|
|=2,|
|=1,|
-
|=2.
(1)求
•
的值;
(2)求|
+
|的值.
查看答案