满分5 >
高中数学试题 >
若f(x)=asinx+b(a,b为常数)的最大值是3,最小值是-5,则的值为(...
若f(x)=asinx+b(a,b为常数)的最大值是3,最小值是-5,则
的值为( )
A.-4
B.4或-4
C.-
D.
考点分析:
相关试题推荐
在复平面内,复数
对应的点的坐标为( )
A.(1,1)
B.(-l,1)
C.(1,-l)
D.(-1,-l)
查看答案
已知函数f(x)=x
2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x
2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)当x∈(0,e]时,证明:
.
查看答案
已知椭圆
过点
,离心率
,若点M(x
,y
)在椭圆C上,则点
称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.
查看答案
某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利a元的前提下,可卖出b件.若作广告宣传,广告费为n千元时比广告费为(n-1)千元时多卖出
件,(n∈N
*).
(1)试写出销售量s与n的函数关系式;
(2)当a=10,b=4000时厂家应生产多少件这种产品,做几千元广告,才能获利最大?
查看答案
已知正方形ABCD.E、F分别是AB、CD的中点,将△ADE沿DE折起,如图所示,记二面角A-DE-C的大小为θ(0<θ<π).
(I)证明BF∥平面ADE;
(II)若△ACD为正三角形,试判断点A在平面BCDE内的射影G是否在直线EF上,证明你的结论,并求角θ的余弦值.
查看答案