已知函数f(x)=lnx,若存在g(x)使得g(x)≤f(x)恒成立,则称g(x)是f(x)的一个“下界函数”.
(I)如果函数g(x)=
-lnx(t为实数)为f(x)的一个“下界函数”,求t的取值范围;
(II)设函数F(x)=f(x)-
+
,试问函数F(x)是否存在零点,若存在,求出零点个数;若不存在,请说明理由.
考点分析:
相关试题推荐
已知函数
.
(1)如果a>0,函数在区间
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式
恒成立,求实数k的取值范围.
查看答案
已知数列{a
n}的前n项和为S
n,a
1=1,a
n+1=2S
n+1(n∈N
*),等差数列{b
n}中b
n>0(n∈N*),且b
1+b
2+b
3=15,又a
1+b
1、a
2+b
2、a
3+b
3成等比数列.
(Ⅰ)求数列{a
n}、{b
n}的通项公式;
(Ⅱ)求数列{a
n•b
n}的前n项和T
n.
查看答案
为征求个人所得税修改建议,某机构对居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)).
(I)求居民月收入在[3000,4000)的频率;
(II)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,设月收入在[3500,4000)的这段应抽人数为m,求m的值.
(III)若从(II)中被抽取的m人中再选派两人参加一项慈善活动,求其中的甲、乙两人至少有一个被选中的概率.
查看答案
已知函数
,
.
(I)求函数y=f(x)图象的对称轴方程;
(II)求函数h(x)=f(x)+g(x)的最小正周期和值域.
查看答案
设函数f(x)=|2x-2|+|x+3|.
(1)解不等式f(x)>6;
(2)若关于x的不等式f(x)≤|2a-1|的解集不是空集,试求a的取值范围.
查看答案