如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F.
(1)证明:E是BC的中点;
(2)证明:AD•AC=AE•AF.
考点分析:
相关试题推荐
已知函数
.
(1)如果a>0,函数在区间
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式
恒成立,求实数k的取值范围.
查看答案
已知O为平面直角坐标系的原点,过点M(-2,0)的直线l与圆x
2+y
2=1交于P,Q两点.
(I)若
,求直线l的方程;
(Ⅱ)若△OMP与△OPQ的面积相等,求直线l的斜率.
查看答案
在长方体ABCD-A
1B
1C
1D
1中,AB=BC=2,过A
1、C
1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A
1C
1D
1,且这个几何体的体积为10.
(1)求棱A
1A的长;
(2)若A
1C
1的中点为O
1,求异面直线BO
1与A
1D
1所成角的大小(结果用反三角函数值表示).
查看答案
某水泥厂甲、乙两个车间包装水泥,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽査数据如下:
甲:102,101,99,98,103,98,99
乙:110,115,90.85,75,115,110
(1)画出这两组数据的茎叶图:
(2>求出这两组数据的平均值和方差(用分数表示>:并说明哪个车间的产品较稳定.
(3)从甲中任取一个数据X (x≥100),从乙中任取一个数据y (y≤100),求满足条件|x-y|≤20的概率.
查看答案
如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处.
(1)求船的航行速度是每小时多少千米?
(2)又经过一段时间后,船到达海岛的正西方向的D、处,问此时船距岛A有多远?
查看答案