满分5 >
高中数学试题 >
设F1,F2是椭圆的左右焦点,若直线x=ma (m>1)上存在一点P,使△F2P...
设F
1,F
2是椭圆
的左右焦点,若直线x=ma (m>1)上存在一点P,使△F
2PF
1是底角为30°的等腰三角形,则m的取值范围是( )
A.1<m<2
B.m>2
C.1<m<
D.m>
考点分析:
相关试题推荐
甲、乙、丙三名优秀的大学毕业生参加一所重点中学的招聘面试,面试合格者可以签约.甲表示只要面试合格就签约,乙与丙则约定,两个面试都合格就一同签约,否则两人都不签约.设每个人面试合格的概率都是P,且面试是否合格互不影响.已知至少有1人面试合格概率为
.
(1)求P.
(2)求签约人数ξ的分布列和数学期望值.
查看答案
某连锁超市有A、B两家分店,对该超市某种商品一个月30天的销售量进行统计:A分店的销售量为200件和300件的天数各有15天;B分店的统计结果如下表:
销售量(单位:件) | 200 | 300 | 400 |
天 数 | 10 | 15 | 5 |
(1)根据上面统计结果,求出B分店销售量为200件、300件、400件的频率;
(2)已知每件该商品的销售利润为1元,ξ表示超市A、B两分店某天销售该商品的利润之和,若以频率作为概率,且A、B两分店的销售量相互独立,求ξ的分布列和数学期望.
查看答案
因台风灾害,我省某水果基地龙眼树严重受损,为此有关专家提出两种拯救龙眼树的方案,每种方案都需分四年实施.若实施方案1,预计第三年可以使龙眼产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第四年可以使龙眼产量为第三年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案2,预计第三年可以使龙眼产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第四年可以使龙眼产量为第三年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第三年与第四年相互独立,令ξ
i(i=1,2)表示方案i实施后第四年龙眼产量达到灾前产量的倍数.
(1)写出ξ
1、ξ
2的分布列;
(2)实施哪种方案,第四年龙眼产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施后第四年龙眼产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?
查看答案
一次考试中,五名同学的数学、物理成绩如下表所示:
学生 | A1 | A2 | A3 | A4 | A5 |
数学(x分) | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(1)请在如图的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程;
(2)要从4名数学成绩在90分以上的同学中选2人参加一项活动,以X表示选中的同学的物理成绩高于90分的人数,求随机变量X的分布列及数学期望E(X)的值.
查看答案
某校为了解高二学生A,B两个学科学习成绩的合格情况是否有关,随机抽取了该年级一次期末考试A,B两个学科的合格人数与不合格人数,得到以下2X2列联表:
| A学科合格人数 | A学科不合格人数 | 合计 |
B学科合格人数 | 40 | 20 | 60 |
B学科不合格人数 | 20 | 30 | 50 |
合计 | 60 | 50 | 110 |
(1)据此表格资料,你认为有多大把握认为“A学科合格”与“B学科合格”有关;
(2)从“A学科合格”的学生中任意抽取2人,记被抽取的2名学生中“B学科合格”的人数为X,求X的数学期望.
附公式与表:K
2=
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案