满分5 > 高中数学试题 >

已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(,). (1)求椭圆的方程;...

manfen5.com 满分网已知中心在原点O,焦点在x轴上,离心率为manfen5.com 满分网的椭圆过点(manfen5.com 满分网manfen5.com 满分网).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
(1)设出椭圆的方程,将已知点代入椭圆的方程及利用椭圆的离心率公式得到关于椭圆的三个参数的等式,解方程组求出a,b,c的值,代入椭圆方程即可. (2)设出直线的方程,将直线方程与椭圆方程联立,消去x得到关于y的二次方程,利用韦达定理得到关于两个交点的坐标的关系,将直线OP,PQ,OQ的斜率用坐标表示,据已知三个斜率成等比数列,列出方程,将韦达定理得到的等式代入,求出k的值,利用判别式大于0得到m的范围,将△OPQ面积用m表示,求出面积的范围. 【解析】 (1)由题意可设椭圆方程为(a>b>0),则 则故 所以,椭圆方程为. (2)由题意可知,直线l的斜率存在且不为0, 故可设直线l的方程为y=kx+m(m≠0),P(x1,y1),Q(x2,y2), 由消去y得 (1+4k2)x2+8kmx+4(m2-1)=0, 则△=64k2b2-16(1+4k2b2)(b2-1)=16(4k2-m2+1)>0, 且,. 故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2. 因为直线OP,PQ,OQ的斜率依次成等比数列, 所以=k2, 即+m2=0,又m≠0, 所以k2=,即k=. 由于直线OP,OQ的斜率存在,且△>0,得 0<m2<2且m2≠1. 设d为点O到直线l的距离, 则S△OPQ=d|PQ|=|x1-x2||m|=, 所以S△OPQ的取值范围为(0,1).
复制答案
考点分析:
相关试题推荐
在平面直角坐标系内,动圆C过定点F(1,0),且与定直线x=-1相切.
(1)求动圆圆心C的轨迹C2的方程;
(2)中心在O的椭圆C1的一个焦点为F,直线l过点M(4,0).若坐标原点O关于直线l的对称点P在曲线C2上,且直线l与椭圆C1有公共点,求椭圆C1的长轴长取得最小值时的椭圆方程.
查看答案
如图已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为manfen5.com 满分网的直线t,交l于点A,交圆M于点B,且|AO|=|OB|=2.
(1)求圆M和抛物线C的方程;
(2)设G,H是抛物线C上异于原点O的两个不同点,且manfen5.com 满分网,求△GOH面积的最小值;
(3)在抛物线C上是否存在两点P,Q关于直线m:y=k(x-1)(k≠0)对称?若存在,求出直线m的方程,若不存在,说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系xoy中,动点P在椭圆C1manfen5.com 满分网+y2=1上,动点Q是动圆C2:x2+y2=r2(1<r<2)上一点.
(1)求证:动点P到椭圆C1的右焦点的距离与到直线x=2的距离之比等于椭圆的离心率;
(2)设椭圆C1上的三点A(x1,y1),B(1,manfen5.com 满分网),C(x2,y2)与点F(1,0)的距离成等差数列,线段AC的垂直平分线是否经过一个定点为?请说明理由.
(3)若直线PQ与椭圆C1和动圆C2均只有一个公共点,求P、Q两点的距离|PQ|的最大值.
查看答案
已知动点P(x,y)与两个定点M(-1,0),N(1,0)的连线的斜率之积等于常数λ(λ≠0)
(1)求动点P的轨迹C的方程;
(2)试根据λ的取值情况讨论轨迹C的形状;
(3)当λ=2时,对于平面上的定点manfen5.com 满分网,试探究轨迹C上是否存在点P,使得∠EPF=120°,若存在,求出点P的坐标;若不存在,说明理由.
查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>1)的左右焦点为F1,F2,抛物线C:y2=2px以F2为焦点且与椭圆相交于点M(x1,y1)、N(x2,y2),点M在x轴上方,直线F1M与抛物线C相切.
(1)求抛物线C的方程和点M、N的坐标;
(2)设A,B是抛物线C上两动点,如果直线MA,MB与y轴分别交于点P,Q.△MPQ是以MP,MQ为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.